On the dependence of the orthogonal projector on deformations of the scalar product
Studia Mathematica, Tome 128 (1998) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.
DOI : 10.4064/sm-128-1-1-17
Keywords: scalar product, orthogonal projector, dependence of projectors on scalar products

Zbigniew Pasternak-Winiarski 1

1
@article{10_4064_sm_128_1_1_17,
     author = {Zbigniew Pasternak-Winiarski},
     title = {On the dependence of the orthogonal projector on deformations of the scalar product},
     journal = {Studia Mathematica},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {128},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-128-1-1-17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-1-17/}
}
TY  - JOUR
AU  - Zbigniew Pasternak-Winiarski
TI  - On the dependence of the orthogonal projector on deformations of the scalar product
JO  - Studia Mathematica
PY  - 1998
SP  - 1
EP  - 17
VL  - 128
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-1-17/
DO  - 10.4064/sm-128-1-1-17
LA  - en
ID  - 10_4064_sm_128_1_1_17
ER  - 
%0 Journal Article
%A Zbigniew Pasternak-Winiarski
%T On the dependence of the orthogonal projector on deformations of the scalar product
%J Studia Mathematica
%D 1998
%P 1-17
%V 128
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-128-1-1-17/
%R 10.4064/sm-128-1-1-17
%G en
%F 10_4064_sm_128_1_1_17
Zbigniew Pasternak-Winiarski. On the dependence of the orthogonal projector on deformations of the scalar product. Studia Mathematica, Tome 128 (1998) no. 1, pp. 1-17. doi: 10.4064/sm-128-1-1-17

Cité par Sources :