Intrinsic characterizations of distribution spaces on domains
Studia Mathematica, Tome 127 (1998) no. 3, pp. 277-298
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give characterizations of Besov and Triebel-Lizorkin spaces $B_{pq}^{s}(Ω)$ and $F_{pq}^s(Ω)$ in smooth domains $Ω ⊂ ℝ^n$ via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 q ≤ ∞ characterizations without use of maximal functions are also obtained.
Keywords:
Besov spaces, Triebel-Lizorkin spaces, spaces on domains, intrinsic characterizations, local means, maximal functions
@article{10_4064_sm_127_3_277_298,
author = {V. S. Rychkov},
title = {Intrinsic characterizations of distribution spaces on domains},
journal = {Studia Mathematica},
pages = {277--298},
year = {1998},
volume = {127},
number = {3},
doi = {10.4064/sm-127-3-277-298},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-277-298/}
}
TY - JOUR AU - V. S. Rychkov TI - Intrinsic characterizations of distribution spaces on domains JO - Studia Mathematica PY - 1998 SP - 277 EP - 298 VL - 127 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-277-298/ DO - 10.4064/sm-127-3-277-298 LA - en ID - 10_4064_sm_127_3_277_298 ER -
V. S. Rychkov. Intrinsic characterizations of distribution spaces on domains. Studia Mathematica, Tome 127 (1998) no. 3, pp. 277-298. doi: 10.4064/sm-127-3-277-298
Cité par Sources :