p-Analytic and p-quasi-analytic vectors
Studia Mathematica, Tome 127 (1998) no. 3, pp. 233-250

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every symmetric operator acting in a Hilbert space, we introduce the families of p-analytic and p-quasi-analytic vectors (p>0), indexed by positive numbers. We prove various properties of these families. We make use of these families to show that certain results guaranteeing essential selfadjointness of an operator with sufficiently large sets of quasi-analytic and Stieltjes vectors are optimal.
DOI : 10.4064/sm-127-3-233-250

Jan Rusinek 1

1
@article{10_4064_sm_127_3_233_250,
     author = {Jan Rusinek},
     title = {p-Analytic and p-quasi-analytic vectors},
     journal = {Studia Mathematica},
     pages = {233--250},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-127-3-233-250},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-233-250/}
}
TY  - JOUR
AU  - Jan Rusinek
TI  - p-Analytic and p-quasi-analytic vectors
JO  - Studia Mathematica
PY  - 1998
SP  - 233
EP  - 250
VL  - 127
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-233-250/
DO  - 10.4064/sm-127-3-233-250
LA  - en
ID  - 10_4064_sm_127_3_233_250
ER  - 
%0 Journal Article
%A Jan Rusinek
%T p-Analytic and p-quasi-analytic vectors
%J Studia Mathematica
%D 1998
%P 233-250
%V 127
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-233-250/
%R 10.4064/sm-127-3-233-250
%G en
%F 10_4064_sm_127_3_233_250
Jan Rusinek. p-Analytic and p-quasi-analytic vectors. Studia Mathematica, Tome 127 (1998) no. 3, pp. 233-250. doi: 10.4064/sm-127-3-233-250

Cité par Sources :