Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$
Studia Mathematica, Tome 127 (1998) no. 3, pp. 223-231
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove an existence and uniqueness theorem for the elliptic Dirichlet problem for the equation div a(x,∇u) = f in a planar domain Ω. Here $f ∈ L^1(Ω)$ and the solution belongs to the so-called grand Sobolev space $W_0^{1,2)}(Ω)$. This is the proper space when the right hand side is assumed to be only $L^1$-integrable. In particular, we obtain the exponential integrability of the solution, which in the linear case was previously proved by Brezis-Merle and Chanillo-Li.
@article{10_4064_sm_127_3_223_231,
author = {A. Fiorenza and C. Sbordone},
title = {Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$},
journal = {Studia Mathematica},
pages = {223--231},
year = {1998},
volume = {127},
number = {3},
doi = {10.4064/sm-127-3-223-231},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-223-231/}
}
TY - JOUR AU - A. Fiorenza AU - C. Sbordone TI - Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$ JO - Studia Mathematica PY - 1998 SP - 223 EP - 231 VL - 127 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-223-231/ DO - 10.4064/sm-127-3-223-231 LA - en ID - 10_4064_sm_127_3_223_231 ER -
%0 Journal Article %A A. Fiorenza %A C. Sbordone %T Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$ %J Studia Mathematica %D 1998 %P 223-231 %V 127 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-223-231/ %R 10.4064/sm-127-3-223-231 %G en %F 10_4064_sm_127_3_223_231
A. Fiorenza; C. Sbordone. Existence and uniqueness results for solutions of nonlinear equations with right hand side in $L^1$. Studia Mathematica, Tome 127 (1998) no. 3, pp. 223-231. doi: 10.4064/sm-127-3-223-231
Cité par Sources :