Harmonic extensions and the Böttcher-Silbermann conjecture
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 127 (1998) no. 3, pp. 201-222
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We present counterexamples to a conjecture of Böttcher and Silbermann on the asymptotic multiplicity of the Poisson kernel of the space $L^∞(∂D)$ and discuss conditions under which the Poisson kernel is asymptotically multiplicative.
            
            
            
          
        
      @article{10_4064_sm_127_3_201_222,
     author = {P. Gorkin and D. Zheng},
     title = {Harmonic extensions and the {B\"ottcher-Silbermann} conjecture},
     journal = {Studia Mathematica},
     pages = {201--222},
     publisher = {mathdoc},
     volume = {127},
     number = {3},
     year = {1998},
     doi = {10.4064/sm-127-3-201-222},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-201-222/}
}
                      
                      
                    TY - JOUR AU - P. Gorkin AU - D. Zheng TI - Harmonic extensions and the Böttcher-Silbermann conjecture JO - Studia Mathematica PY - 1998 SP - 201 EP - 222 VL - 127 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-3-201-222/ DO - 10.4064/sm-127-3-201-222 LA - de ID - 10_4064_sm_127_3_201_222 ER -
P. Gorkin; D. Zheng. Harmonic extensions and the Böttcher-Silbermann conjecture. Studia Mathematica, Tome 127 (1998) no. 3, pp. 201-222. doi: 10.4064/sm-127-3-201-222
Cité par Sources :
