Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces
Studia Mathematica, Tome 127 (1998) no. 2, pp. 99-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.
Keywords:
norm attaining multilinear forms and polynomials, weakly continuous multilinear forms and polynomials, Lorentz sequence spaces
Affiliations des auteurs :
M. Jimenéz Sevilla 1 ; Rafael Payá 1
@article{10_4064_sm_127_2_99_112,
author = {M. Jimen\'ez Sevilla and Rafael Pay\'a},
title = {Norm attaining multilinear forms and polynomials on preduals of {Lorentz} sequence spaces},
journal = {Studia Mathematica},
pages = {99--112},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {1998},
doi = {10.4064/sm-127-2-99-112},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-99-112/}
}
TY - JOUR AU - M. Jimenéz Sevilla AU - Rafael Payá TI - Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces JO - Studia Mathematica PY - 1998 SP - 99 EP - 112 VL - 127 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-99-112/ DO - 10.4064/sm-127-2-99-112 LA - en ID - 10_4064_sm_127_2_99_112 ER -
%0 Journal Article %A M. Jimenéz Sevilla %A Rafael Payá %T Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces %J Studia Mathematica %D 1998 %P 99-112 %V 127 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-99-112/ %R 10.4064/sm-127-2-99-112 %G en %F 10_4064_sm_127_2_99_112
M. Jimenéz Sevilla; Rafael Payá. Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces. Studia Mathematica, Tome 127 (1998) no. 2, pp. 99-112. doi: 10.4064/sm-127-2-99-112
Cité par Sources :