The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin
Studia Mathematica, Tome 127 (1998) no. 2, pp. 169-190

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a pseudodifferential operator on $ℝ^N$ whose Weyl symbol a is a strictly positive smooth function on $W = ℝ^N × ℝ^N$ such that $|∂^{α}a| ≤ C_αa^{1-ϱ}$ for some ϱ>0 and all |α|>0, $∂^{α}a$ is bounded for large |α|, and $lim_{w→∞}a(w) = ∞$. Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
DOI : 10.4064/sm-127-2-169-190

Paweł Głowacki 1

1
@article{10_4064_sm_127_2_169_190,
     author = {Pawe{\l} G{\l}owacki},
     title = {The {Weyl} asymptotic formula by the method of {Tulovski\u{i}} and {Shubin}},
     journal = {Studia Mathematica},
     pages = {169--190},
     publisher = {mathdoc},
     volume = {127},
     number = {2},
     year = {1998},
     doi = {10.4064/sm-127-2-169-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-169-190/}
}
TY  - JOUR
AU  - Paweł Głowacki
TI  - The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin
JO  - Studia Mathematica
PY  - 1998
SP  - 169
EP  - 190
VL  - 127
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-169-190/
DO  - 10.4064/sm-127-2-169-190
LA  - en
ID  - 10_4064_sm_127_2_169_190
ER  - 
%0 Journal Article
%A Paweł Głowacki
%T The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin
%J Studia Mathematica
%D 1998
%P 169-190
%V 127
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-169-190/
%R 10.4064/sm-127-2-169-190
%G en
%F 10_4064_sm_127_2_169_190
Paweł Głowacki. The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin. Studia Mathematica, Tome 127 (1998) no. 2, pp. 169-190. doi: 10.4064/sm-127-2-169-190

Cité par Sources :