The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin
Studia Mathematica, Tome 127 (1998) no. 2, pp. 169-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let A be a pseudodifferential operator on $ℝ^N$ whose Weyl symbol a is a strictly positive smooth function on $W = ℝ^N × ℝ^N$ such that $|∂^{α}a| ≤ C_αa^{1-ϱ}$ for some ϱ>0 and all |α|>0, $∂^{α}a$ is bounded for large |α|, and $lim_{w→∞}a(w) = ∞$. Such an operator A is essentially selfadjoint, bounded from below, and its spectrum is discrete. The remainder term in the Weyl asymptotic formula for the distribution of the eigenvalues of A is estimated. This is done by applying the method of approximate spectral projectors of Tulovskiĭ and Shubin.
@article{10_4064_sm_127_2_169_190,
author = {Pawe{\l} G{\l}owacki},
title = {The {Weyl} asymptotic formula by the method of {Tulovski\u{i}} and {Shubin}},
journal = {Studia Mathematica},
pages = {169--190},
publisher = {mathdoc},
volume = {127},
number = {2},
year = {1998},
doi = {10.4064/sm-127-2-169-190},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-169-190/}
}
TY - JOUR AU - Paweł Głowacki TI - The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin JO - Studia Mathematica PY - 1998 SP - 169 EP - 190 VL - 127 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-2-169-190/ DO - 10.4064/sm-127-2-169-190 LA - en ID - 10_4064_sm_127_2_169_190 ER -
Paweł Głowacki. The Weyl asymptotic formula by the method of Tulovskiĭ and Shubin. Studia Mathematica, Tome 127 (1998) no. 2, pp. 169-190. doi: 10.4064/sm-127-2-169-190
Cité par Sources :