The parametric Weierstrass integral over a BV curve as a length functional
Studia Mathematica, Tome 127 (1998) no. 1, pp. 9-19

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.
DOI : 10.4064/sm-127-1-9-19

Loris Faina 1

1
@article{10_4064_sm_127_1_9_19,
     author = {Loris Faina},
     title = {The parametric {Weierstrass} integral over a {BV} curve as a length functional},
     journal = {Studia Mathematica},
     pages = {9--19},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-127-1-9-19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-9-19/}
}
TY  - JOUR
AU  - Loris Faina
TI  - The parametric Weierstrass integral over a BV curve as a length functional
JO  - Studia Mathematica
PY  - 1998
SP  - 9
EP  - 19
VL  - 127
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-9-19/
DO  - 10.4064/sm-127-1-9-19
LA  - en
ID  - 10_4064_sm_127_1_9_19
ER  - 
%0 Journal Article
%A Loris Faina
%T The parametric Weierstrass integral over a BV curve as a length functional
%J Studia Mathematica
%D 1998
%P 9-19
%V 127
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-9-19/
%R 10.4064/sm-127-1-9-19
%G en
%F 10_4064_sm_127_1_9_19
Loris Faina. The parametric Weierstrass integral over a BV curve as a length functional. Studia Mathematica, Tome 127 (1998) no. 1, pp. 9-19. doi: 10.4064/sm-127-1-9-19

Cité par Sources :