The parametric Weierstrass integral over a BV curve as a length functional
Studia Mathematica, Tome 127 (1998) no. 1, pp. 9-19
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The constructive definition of the Weierstrass integral through only one limit process over finite sums is often preferable to the more sophisticated definition of the Serrin integral, especially for approximation purposes. By proving that the Weierstrass integral over a BV curve is a length functional with respect to a suitable metric, we discover a further natural reason for studying the Weierstrass integral. This characterization was conjectured by Menger.
@article{10_4064_sm_127_1_9_19,
author = {Loris Faina},
title = {The parametric {Weierstrass} integral over a {BV} curve as a length functional},
journal = {Studia Mathematica},
pages = {9--19},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {1998},
doi = {10.4064/sm-127-1-9-19},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-9-19/}
}
TY - JOUR AU - Loris Faina TI - The parametric Weierstrass integral over a BV curve as a length functional JO - Studia Mathematica PY - 1998 SP - 9 EP - 19 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-9-19/ DO - 10.4064/sm-127-1-9-19 LA - en ID - 10_4064_sm_127_1_9_19 ER -
Loris Faina. The parametric Weierstrass integral over a BV curve as a length functional. Studia Mathematica, Tome 127 (1998) no. 1, pp. 9-19. doi: 10.4064/sm-127-1-9-19
Cité par Sources :