The Abel equation and total solvability of linear functional equations
Studia Mathematica, Tome 127 (1998) no. 1, pp. 81-97
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the solvability in continuous functions of the Abel equation φ(Fx) - φ(x) = 1 where F is a given continuous mapping of a topological space X. This property depends on the dynamics generated by F. The solvability of all linear equations P(x)ψ(Fx) + Q(x)ψ(x) = γ(x) follows from solvability of the Abel equation in case F is a homeomorphism. If F is noninvertible but X is locally compact then such a total solvability is determined by the same property of the cohomological equation φ(Fx) - φ(x) = γ(x). The smooth situation can also be considered in this way.
Keywords:
functional equation, Abel equation, cohomological equation, wandering set
Affiliations des auteurs :
G. Belitskii 1 ; Yu. Lyubich 1
@article{10_4064_sm_127_1_81_97,
author = {G. Belitskii and Yu. Lyubich},
title = {The {Abel} equation and total solvability of linear functional equations},
journal = {Studia Mathematica},
pages = {81--97},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {1998},
doi = {10.4064/sm-127-1-81-97},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-81-97/}
}
TY - JOUR AU - G. Belitskii AU - Yu. Lyubich TI - The Abel equation and total solvability of linear functional equations JO - Studia Mathematica PY - 1998 SP - 81 EP - 97 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-81-97/ DO - 10.4064/sm-127-1-81-97 LA - en ID - 10_4064_sm_127_1_81_97 ER -
%0 Journal Article %A G. Belitskii %A Yu. Lyubich %T The Abel equation and total solvability of linear functional equations %J Studia Mathematica %D 1998 %P 81-97 %V 127 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-81-97/ %R 10.4064/sm-127-1-81-97 %G en %F 10_4064_sm_127_1_81_97
G. Belitskii; Yu. Lyubich. The Abel equation and total solvability of linear functional equations. Studia Mathematica, Tome 127 (1998) no. 1, pp. 81-97. doi: 10.4064/sm-127-1-81-97
Cité par Sources :