A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 127 (1998) no. 1, pp. 65-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let (x_n) be a sequence in a Banach space X which does not converge in norm, and let E be an isomorphically precisely norming set for X such that (*) ∑_n |x*(x_{n+1} - x_n)|  ∞, ∀x* ∈ E. Then there exists a subsequence of (x_n) which spans an isomorphically polyhedral Banach space. It follows immediately from results of V. Fonf that the converse is also true: If Y is a separable isomorphically polyhedral Banach space then there exists a normalized M-basis (x_n) which spans Y and there exists an isomorphically precisely norming set E for Y such that (*) is satisfied. As an application of this subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces we obtain a strengthening of a result of J. Elton, and an Orlicz-Pettis type result.
            
            
            
          
        
      @article{10_4064_sm_127_1_65_80,
     author = {G. Androulakis},
     title = {A subsequence characterization of sequences spanning isomorphically polyhedral {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {65--80},
     publisher = {mathdoc},
     volume = {127},
     number = {1},
     year = {1998},
     doi = {10.4064/sm-127-1-65-80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-65-80/}
}
                      
                      
                    TY - JOUR AU - G. Androulakis TI - A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces JO - Studia Mathematica PY - 1998 SP - 65 EP - 80 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-65-80/ DO - 10.4064/sm-127-1-65-80 LA - en ID - 10_4064_sm_127_1_65_80 ER -
%0 Journal Article %A G. Androulakis %T A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces %J Studia Mathematica %D 1998 %P 65-80 %V 127 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-65-80/ %R 10.4064/sm-127-1-65-80 %G en %F 10_4064_sm_127_1_65_80
G. Androulakis. A subsequence characterization of sequences spanning isomorphically polyhedral Banach spaces. Studia Mathematica, Tome 127 (1998) no. 1, pp. 65-80. doi: 10.4064/sm-127-1-65-80
Cité par Sources :
