On the Djrbashian kernel of a Siegel domain
Studia Mathematica, Tome 127 (1998) no. 1, pp. 47-63
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = {ζ ∈ ℂ^n : ϱ (ζ) >0} $, $ϱ(ζ) = Im(ζ_1) - |ζ'|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.
Keywords:
γ-Bergman kernel, reproducing kernel Hilbert space, Djrbashian kernel, transition probability amplitude, Genchev transform
Affiliations des auteurs :
Elisabetta Barletta 1 ; Sorin Dragomir 1
@article{10_4064_sm_127_1_47_63,
author = {Elisabetta Barletta and Sorin Dragomir},
title = {On the {Djrbashian} kernel of a {Siegel} domain},
journal = {Studia Mathematica},
pages = {47--63},
publisher = {mathdoc},
volume = {127},
number = {1},
year = {1998},
doi = {10.4064/sm-127-1-47-63},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-47-63/}
}
TY - JOUR AU - Elisabetta Barletta AU - Sorin Dragomir TI - On the Djrbashian kernel of a Siegel domain JO - Studia Mathematica PY - 1998 SP - 47 EP - 63 VL - 127 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-47-63/ DO - 10.4064/sm-127-1-47-63 LA - en ID - 10_4064_sm_127_1_47_63 ER -
Elisabetta Barletta; Sorin Dragomir. On the Djrbashian kernel of a Siegel domain. Studia Mathematica, Tome 127 (1998) no. 1, pp. 47-63. doi: 10.4064/sm-127-1-47-63
Cité par Sources :