On the Djrbashian kernel of a Siegel domain
Studia Mathematica, Tome 127 (1998) no. 1, pp. 47-63
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish an inversion formula for the M. M. Djrbashian A. H. Karapetyan integral transform (cf. [6]) on the Siegel domain $Ω_n = {ζ ∈ ℂ^n : ϱ (ζ) >0} $, $ϱ(ζ) = Im(ζ_1) - |ζ'|^2$. We build a family of Kähler metrics of constant holomorphic curvature whose potentials are the $ϱ^α$-Bergman kernels, α > -1, (in the sense of Z. Pasternak-Winiarski [20] of $Ω_n$. We build an anti-holomorphic embedding of $Ω_n$ in the complex projective Hilbert space $ℂℙ(H^2_α(Ω_n))$ and study (in connection with work by A. Odzijewicz [18] the corresponding transition probability amplitudes. The Genchev transform (cf. [9]) is shown to be well defined on $L^2(Ω, ϱ^α)$, for any strip Ω ⊂ ℂ, and applied in a problem of approximation by holomorphic functions. Building on work by T. Mazur (cf. [15]) we prove the existence of a complete orthonormal system in $H^2_α(Ω_n)$ consisting of eigenfunctions of a certain explicitly defined operator $V_a$, $a ∈ B_n$.
Keywords:
γ-Bergman kernel, reproducing kernel Hilbert space, Djrbashian kernel, transition probability amplitude, Genchev transform
@article{10_4064_sm_127_1_47_63,
author = {Elisabetta Barletta and Sorin Dragomir},
title = {On the {Djrbashian} kernel of a {Siegel} domain},
journal = {Studia Mathematica},
pages = {47--63},
year = {1998},
volume = {127},
number = {1},
doi = {10.4064/sm-127-1-47-63},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-47-63/}
}
TY - JOUR AU - Elisabetta Barletta AU - Sorin Dragomir TI - On the Djrbashian kernel of a Siegel domain JO - Studia Mathematica PY - 1998 SP - 47 EP - 63 VL - 127 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-47-63/ DO - 10.4064/sm-127-1-47-63 LA - en ID - 10_4064_sm_127_1_47_63 ER -
Elisabetta Barletta; Sorin Dragomir. On the Djrbashian kernel of a Siegel domain. Studia Mathematica, Tome 127 (1998) no. 1, pp. 47-63. doi: 10.4064/sm-127-1-47-63
Cité par Sources :