A universal modulus for normed spaces
Studia Mathematica, Tome 127 (1998) no. 1, pp. 21-46
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
@article{10_4064_sm_127_1_21_46,
author = {Carlos Ben{\'\i}tez and Krzysztof Przes{\l}awski and David Yost},
title = {A universal modulus for normed spaces},
journal = {Studia Mathematica},
pages = {21--46},
year = {1998},
volume = {127},
number = {1},
doi = {10.4064/sm-127-1-21-46},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-21-46/}
}
TY - JOUR AU - Carlos Benítez AU - Krzysztof Przesławski AU - David Yost TI - A universal modulus for normed spaces JO - Studia Mathematica PY - 1998 SP - 21 EP - 46 VL - 127 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-21-46/ DO - 10.4064/sm-127-1-21-46 LA - en ID - 10_4064_sm_127_1_21_46 ER -
Carlos Benítez; Krzysztof Przesławski; David Yost. A universal modulus for normed spaces. Studia Mathematica, Tome 127 (1998) no. 1, pp. 21-46. doi: 10.4064/sm-127-1-21-46
Cité par Sources :