A universal modulus for normed spaces
Studia Mathematica, Tome 127 (1998) no. 1, pp. 21-46 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
@article{10_4064_sm_127_1_21_46,
     author = {Carlos Ben{\'\i}tez and Krzysztof Przes{\l}awski and David Yost},
     title = {A universal modulus for normed spaces},
     journal = {Studia Mathematica},
     pages = {21--46},
     year = {1998},
     volume = {127},
     number = {1},
     doi = {10.4064/sm-127-1-21-46},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-21-46/}
}
TY  - JOUR
AU  - Carlos Benítez
AU  - Krzysztof Przesławski
AU  - David Yost
TI  - A universal modulus for normed spaces
JO  - Studia Mathematica
PY  - 1998
SP  - 21
EP  - 46
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-21-46/
DO  - 10.4064/sm-127-1-21-46
LA  - en
ID  - 10_4064_sm_127_1_21_46
ER  - 
%0 Journal Article
%A Carlos Benítez
%A Krzysztof Przesławski
%A David Yost
%T A universal modulus for normed spaces
%J Studia Mathematica
%D 1998
%P 21-46
%V 127
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-21-46/
%R 10.4064/sm-127-1-21-46
%G en
%F 10_4064_sm_127_1_21_46
Carlos Benítez; Krzysztof Przesławski; David Yost. A universal modulus for normed spaces. Studia Mathematica, Tome 127 (1998) no. 1, pp. 21-46. doi: 10.4064/sm-127-1-21-46

Cité par Sources :