Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
Studia Mathematica, Tome 127 (1998) no. 1, pp. 1-7
The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
@article{10_4064_sm_127_1_1_7,
author = {J\"org Krone and Volker Walldorf},
title = {Complemented subspaces with a strong finite-dimensional decomposition of nuclear {K\"othe} spaces have a basis},
journal = {Studia Mathematica},
pages = {1--7},
year = {1998},
volume = {127},
number = {1},
doi = {10.4064/sm-127-1-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/}
}
TY - JOUR AU - Jörg Krone AU - Volker Walldorf TI - Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis JO - Studia Mathematica PY - 1998 SP - 1 EP - 7 VL - 127 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/ DO - 10.4064/sm-127-1-1-7 LA - en ID - 10_4064_sm_127_1_1_7 ER -
%0 Journal Article %A Jörg Krone %A Volker Walldorf %T Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis %J Studia Mathematica %D 1998 %P 1-7 %V 127 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/ %R 10.4064/sm-127-1-1-7 %G en %F 10_4064_sm_127_1_1_7
Jörg Krone; Volker Walldorf. Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis. Studia Mathematica, Tome 127 (1998) no. 1, pp. 1-7. doi: 10.4064/sm-127-1-1-7
Cité par Sources :