Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
Studia Mathematica, Tome 127 (1998) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The following result is proved: Let E be a complemented subspace with an r-finite-dimensional decomposition of a nuclear Köthe space λ(A). Then E has a basis.
@article{10_4064_sm_127_1_1_7,
     author = {J\"org Krone and Volker Walldorf},
     title = {Complemented subspaces with a strong finite-dimensional decomposition of nuclear {K\"othe} spaces have a basis},
     journal = {Studia Mathematica},
     pages = {1--7},
     year = {1998},
     volume = {127},
     number = {1},
     doi = {10.4064/sm-127-1-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/}
}
TY  - JOUR
AU  - Jörg Krone
AU  - Volker Walldorf
TI  - Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
JO  - Studia Mathematica
PY  - 1998
SP  - 1
EP  - 7
VL  - 127
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/
DO  - 10.4064/sm-127-1-1-7
LA  - en
ID  - 10_4064_sm_127_1_1_7
ER  - 
%0 Journal Article
%A Jörg Krone
%A Volker Walldorf
%T Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis
%J Studia Mathematica
%D 1998
%P 1-7
%V 127
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-127-1-1-7/
%R 10.4064/sm-127-1-1-7
%G en
%F 10_4064_sm_127_1_1_7
Jörg Krone; Volker Walldorf. Complemented subspaces with a strong finite-dimensional decomposition of nuclear Köthe spaces have a basis. Studia Mathematica, Tome 127 (1998) no. 1, pp. 1-7. doi: 10.4064/sm-127-1-1-7

Cité par Sources :