On non-primary Fréchet Schwartz spaces
Studia Mathematica, Tome 126 (1997) no. 3, pp. 291-307
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let E be a Fréchet Schwartz space with a continuous norm and with a finite-dimensional decomposition, and let F be any infinite-dimensional subspace of E. It is proved that E can be written as G ⨁ H where G and H do not contain any subspace isomorphic to F. In particular, E is not primary. If the subspace F is not normable then the statement holds for other quasinormable Fréchet spaces, e.g., if E is a quasinormable and locally normable Köthe sequence space, or if E is a space of holomorphic functions of bounded type $ℋ_b(U)$, where U is a Banach space or a bounded absolutely convex open set in a Banach space.
Mots-clés :
Fréchet spaces, primary spaces, Schwartz spaces, unconditional decompositions, spaces of Moscatelli type, holomorphic functions of bounded type
Affiliations des auteurs :
J. C. Díaz 1
@article{10_4064_sm_126_3_291_307,
author = {J. C. D{\'\i}az},
title = {On non-primary {Fr\'echet} {Schwartz} spaces},
journal = {Studia Mathematica},
pages = {291--307},
publisher = {mathdoc},
volume = {126},
number = {3},
year = {1997},
doi = {10.4064/sm-126-3-291-307},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-3-291-307/}
}
J. C. Díaz. On non-primary Fréchet Schwartz spaces. Studia Mathematica, Tome 126 (1997) no. 3, pp. 291-307. doi: 10.4064/sm-126-3-291-307
Cité par Sources :