BV coboundaries over irrational rotations
Studia Mathematica, Tome 126 (1997) no. 3, pp. 253-271

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For every irrational rotation we construct a coboundary which is continuous except at a single point where it has a jump, is nondecreasing, and has zero derivative almost everywhere.
DOI : 10.4064/sm-126-3-253-271

Dalibor Volný 1

1
@article{10_4064_sm_126_3_253_271,
     author = {Dalibor Voln\'y},
     title = {BV coboundaries over irrational rotations},
     journal = {Studia Mathematica},
     pages = {253--271},
     publisher = {mathdoc},
     volume = {126},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-126-3-253-271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-3-253-271/}
}
TY  - JOUR
AU  - Dalibor Volný
TI  - BV coboundaries over irrational rotations
JO  - Studia Mathematica
PY  - 1997
SP  - 253
EP  - 271
VL  - 126
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-3-253-271/
DO  - 10.4064/sm-126-3-253-271
LA  - en
ID  - 10_4064_sm_126_3_253_271
ER  - 
%0 Journal Article
%A Dalibor Volný
%T BV coboundaries over irrational rotations
%J Studia Mathematica
%D 1997
%P 253-271
%V 126
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-3-253-271/
%R 10.4064/sm-126-3-253-271
%G en
%F 10_4064_sm_126_3_253_271
Dalibor Volný. BV coboundaries over irrational rotations. Studia Mathematica, Tome 126 (1997) no. 3, pp. 253-271. doi: 10.4064/sm-126-3-253-271

Cité par Sources :