On the range of convolution operators on non-quasianalytic ultradifferentiable functions
Studia Mathematica, Tome 126 (1997) no. 2, pp. 171-198
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $ℇ_{(ω)}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ'_{(ω)}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_{(ω)}(Ω_1) → ℇ_{(ω)}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D'_{{ω}}(Ω_1) → D'_{{ω}}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ'_{{ω}}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.
@article{10_4064_sm_126_2_171_198,
author = {J. Bonet and and },
title = {On the range of convolution operators on non-quasianalytic ultradifferentiable functions},
journal = {Studia Mathematica},
pages = {171--198},
year = {1997},
volume = {126},
number = {2},
doi = {10.4064/sm-126-2-171-198},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/}
}
TY - JOUR AU - J. Bonet AU - AU - TI - On the range of convolution operators on non-quasianalytic ultradifferentiable functions JO - Studia Mathematica PY - 1997 SP - 171 EP - 198 VL - 126 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/ DO - 10.4064/sm-126-2-171-198 LA - en ID - 10_4064_sm_126_2_171_198 ER -
%0 Journal Article %A J. Bonet %A %A %T On the range of convolution operators on non-quasianalytic ultradifferentiable functions %J Studia Mathematica %D 1997 %P 171-198 %V 126 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/ %R 10.4064/sm-126-2-171-198 %G en %F 10_4064_sm_126_2_171_198
J. Bonet; ; . On the range of convolution operators on non-quasianalytic ultradifferentiable functions. Studia Mathematica, Tome 126 (1997) no. 2, pp. 171-198. doi: 10.4064/sm-126-2-171-198
Cité par Sources :