On the range of convolution operators on non-quasianalytic ultradifferentiable functions
Studia Mathematica, Tome 126 (1997) no. 2, pp. 171-198

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $ℇ_{(ω)}(Ω)$ denote the non-quasianalytic class of Beurling type on an open set Ω in $ℝ^n$. For $μ ∈ ℇ'_{(ω)}(ℝ^n)$ the surjectivity of the convolution operator $T_μ: ℇ_{(ω)}(Ω_1) → ℇ_{(ω)}(Ω_2)$ is characterized by various conditions, e.g. in terms of a convexity property of the pair $(Ω_1, Ω_2)$ and the existence of a fundamental solution for μ or equivalently by a slowly decreasing condition for the Fourier-Laplace transform of μ. Similar conditions characterize the surjectivity of a convolution operator $S_μ: D'_{{ω}}(Ω_1) → D'_{{ω}}(Ω_2)$ between ultradistributions of Roumieu type whenever $μ ∈ ℇ'_{{ω}}(ℝ^n)$. These results extend classical work of Hörmander on convolution operators between spaces of $C^∞$-functions and more recent one of Ciorănescu and Braun, Meise and Vogt.
DOI : 10.4064/sm-126-2-171-198

J. Bonet 1 ;  1 ;  1

1
@article{10_4064_sm_126_2_171_198,
     author = {J. Bonet and   and  },
     title = {On the range of convolution operators on non-quasianalytic ultradifferentiable functions},
     journal = {Studia Mathematica},
     pages = {171--198},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-126-2-171-198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/}
}
TY  - JOUR
AU  - J. Bonet
AU  -  
AU  -  
TI  - On the range of convolution operators on non-quasianalytic ultradifferentiable functions
JO  - Studia Mathematica
PY  - 1997
SP  - 171
EP  - 198
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/
DO  - 10.4064/sm-126-2-171-198
LA  - en
ID  - 10_4064_sm_126_2_171_198
ER  - 
%0 Journal Article
%A J. Bonet
%A  
%A  
%T On the range of convolution operators on non-quasianalytic ultradifferentiable functions
%J Studia Mathematica
%D 1997
%P 171-198
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-171-198/
%R 10.4064/sm-126-2-171-198
%G en
%F 10_4064_sm_126_2_171_198
J. Bonet;  ;  . On the range of convolution operators on non-quasianalytic ultradifferentiable functions. Studia Mathematica, Tome 126 (1997) no. 2, pp. 171-198. doi: 10.4064/sm-126-2-171-198

Cité par Sources :