Fixed points of Lipschitzian semigroups in Banach spaces
Studia Mathematica, Tome 126 (1997) no. 2, pp. 101-113

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If $T = {T_s: C → C: s ∈ G = [0,∞)}$ is a Lipschitzian semigroup such that $g = lim inf_{G ∋ α → ∞} inf_{G ∋ δ ≥ 0} 1/α ʃ^α_0 ∥T_{β+δ}∥^p dβ 1 + c$, where c > 0 is some constant, then there exists x ∈ C such that $T_sx = x$ for all s ∈ G.
DOI : 10.4064/sm-126-2-101-113
Keywords: Lipschitzian semigroup, fixed point, p-uniformly convex Banach space

Jarosław Górnicki 1

1
@article{10_4064_sm_126_2_101_113,
     author = {Jaros{\l}aw G\'ornicki},
     title = {Fixed points of {Lipschitzian} semigroups in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {101--113},
     publisher = {mathdoc},
     volume = {126},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-126-2-101-113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-101-113/}
}
TY  - JOUR
AU  - Jarosław Górnicki
TI  - Fixed points of Lipschitzian semigroups in Banach spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 101
EP  - 113
VL  - 126
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-101-113/
DO  - 10.4064/sm-126-2-101-113
LA  - en
ID  - 10_4064_sm_126_2_101_113
ER  - 
%0 Journal Article
%A Jarosław Górnicki
%T Fixed points of Lipschitzian semigroups in Banach spaces
%J Studia Mathematica
%D 1997
%P 101-113
%V 126
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-101-113/
%R 10.4064/sm-126-2-101-113
%G en
%F 10_4064_sm_126_2_101_113
Jarosław Górnicki. Fixed points of Lipschitzian semigroups in Banach spaces. Studia Mathematica, Tome 126 (1997) no. 2, pp. 101-113. doi: 10.4064/sm-126-2-101-113

Cité par Sources :