Fixed points of Lipschitzian semigroups in Banach spaces
Studia Mathematica, Tome 126 (1997) no. 2, pp. 101-113
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the following theorem: Let p > 1 and let E be a real p-uniformly convex Banach space, and C a nonempty bounded closed convex subset of E. If $T = {T_s: C → C: s ∈ G = [0,∞)}$ is a Lipschitzian semigroup such that $g = lim inf_{G ∋ α → ∞} inf_{G ∋ δ ≥ 0} 1/α ʃ^α_0 ∥T_{β+δ}∥^p dβ 1 + c$, where c > 0 is some constant, then there exists x ∈ C such that $T_sx = x$ for all s ∈ G.
Keywords:
Lipschitzian semigroup, fixed point, p-uniformly convex Banach space
Affiliations des auteurs :
Jarosław Górnicki 1
@article{10_4064_sm_126_2_101_113,
author = {Jaros{\l}aw G\'ornicki},
title = {Fixed points of {Lipschitzian} semigroups in {Banach} spaces},
journal = {Studia Mathematica},
pages = {101--113},
publisher = {mathdoc},
volume = {126},
number = {2},
year = {1997},
doi = {10.4064/sm-126-2-101-113},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-101-113/}
}
TY - JOUR AU - Jarosław Górnicki TI - Fixed points of Lipschitzian semigroups in Banach spaces JO - Studia Mathematica PY - 1997 SP - 101 EP - 113 VL - 126 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-2-101-113/ DO - 10.4064/sm-126-2-101-113 LA - en ID - 10_4064_sm_126_2_101_113 ER -
Jarosław Górnicki. Fixed points of Lipschitzian semigroups in Banach spaces. Studia Mathematica, Tome 126 (1997) no. 2, pp. 101-113. doi: 10.4064/sm-126-2-101-113
Cité par Sources :