Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
Studia Mathematica, Tome 126 (1997) no. 1, pp. 67-94
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function $M_φ f(x) = sup1/φ(B) ʃ_{B∩∂D} |f|dν$, x∈ D, where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) 3/2 t(x)$ and φ is a nonnegative set function defined for all Borel sets of X satisfying the quasi-monotonicity and doubling properties. We give a necessary and sufficient condition on the weights w and v for the weighted norm inequality (0.1) $(ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p}$ to hold when 1 p q ∞, $σdν = v^{1-p'}dν$ is a doubling weight, and dν is a doubling measure, and give a sufficient condition for (0.1) when 1 p ≤ q ∞ without assuming that σ is a doubling weight but with an extra assumption on φ. Another characterization for (0.1) is also provided for 1 p ≤ q ∞ and D of the form Y×(0,∞), where Y is a homogeneous space with group structure. These results generalize some known theorems in the case when $M_φ$ is the fractional maximal function in $ℝ^{n+1}_+$, that is, when $M_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν$, where $(x,t) ∈ ℝ^{n+1}_+$, 0 γ 1, and ν is a doubling measure in $ℝ^n$.
Keywords:
norm inequality, weight, maximal function, homogeneous space
Affiliations des auteurs :
Sérgio Luís Zani 1
@article{10_4064_sm_126_1_67_94,
author = {S\'ergio Lu{\'\i}s Zani},
title = {Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates},
journal = {Studia Mathematica},
pages = {67--94},
publisher = {mathdoc},
volume = {126},
number = {1},
year = {1997},
doi = {10.4064/sm-126-1-67-94},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/}
}
TY - JOUR AU - Sérgio Luís Zani TI - Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates JO - Studia Mathematica PY - 1997 SP - 67 EP - 94 VL - 126 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/ DO - 10.4064/sm-126-1-67-94 LA - en ID - 10_4064_sm_126_1_67_94 ER -
%0 Journal Article %A Sérgio Luís Zani %T Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates %J Studia Mathematica %D 1997 %P 67-94 %V 126 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/ %R 10.4064/sm-126-1-67-94 %G en %F 10_4064_sm_126_1_67_94
Sérgio Luís Zani. Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates. Studia Mathematica, Tome 126 (1997) no. 1, pp. 67-94. doi: 10.4064/sm-126-1-67-94
Cité par Sources :