Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
Studia Mathematica, Tome 126 (1997) no. 1, pp. 67-94

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let D be an open subset of a homogeneous space(X,d,μ). Consider the maximal function $M_φ f(x) = sup1/φ(B) ʃ_{B∩∂D} |f|dν$, x∈ D, where the supremum is taken over all balls of the form B = B(a(x),r) with r > t(x) = d(x,∂D), a(x)∈ ∂D is such that d(a(x),x) 3/2 t(x)$ and φ is a nonnegative set function defined for all Borel sets of X satisfying the quasi-monotonicity and doubling properties. We give a necessary and sufficient condition on the weights w and v for the weighted norm inequality (0.1) $(ʃ_D [M_φ(f)]^q wdμ)^{1/q} ≤ c(ʃ_{∂D} |f|^p vdν)^{1/p}$ to hold when 1 p q ∞, $σdν = v^{1-p'}dν$ is a doubling weight, and dν is a doubling measure, and give a sufficient condition for (0.1) when 1 p ≤ q ∞ without assuming that σ is a doubling weight but with an extra assumption on φ. Another characterization for (0.1) is also provided for 1 p ≤ q ∞ and D of the form Y×(0,∞), where Y is a homogeneous space with group structure. These results generalize some known theorems in the case when $M_φ$ is the fractional maximal function in $ℝ^{n+1}_+$, that is, when $M_φ f(x,t) = M_γ f(x,t) = sup_{r>t} 1/(ν(B(x,r))^{1-γ}) ʃ_{B(x,r)} |f|dν$, where $(x,t) ∈ ℝ^{n+1}_+$, 0 γ 1, and ν is a doubling measure in $ℝ^n$.
DOI : 10.4064/sm-126-1-67-94
Keywords: norm inequality, weight, maximal function, homogeneous space

Sérgio Luís Zani 1

1
@article{10_4064_sm_126_1_67_94,
     author = {S\'ergio Lu{\'\i}s Zani},
     title = {Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates},
     journal = {Studia Mathematica},
     pages = {67--94},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-126-1-67-94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/}
}
TY  - JOUR
AU  - Sérgio Luís Zani
TI  - Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
JO  - Studia Mathematica
PY  - 1997
SP  - 67
EP  - 94
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/
DO  - 10.4064/sm-126-1-67-94
LA  - en
ID  - 10_4064_sm_126_1_67_94
ER  - 
%0 Journal Article
%A Sérgio Luís Zani
%T Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates
%J Studia Mathematica
%D 1997
%P 67-94
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-67-94/
%R 10.4064/sm-126-1-67-94
%G en
%F 10_4064_sm_126_1_67_94
Sérgio Luís Zani. Two-weight norm inequalities for maximal functions on homogeneous spaces and boundary estimates. Studia Mathematica, Tome 126 (1997) no. 1, pp. 67-94. doi: 10.4064/sm-126-1-67-94

Cité par Sources :