The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$
Studia Mathematica, Tome 126 (1997) no. 1, pp. 13-25
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let H be a real Hilbert space. It is well known that a positive-definite function φ on H is the Fourier transform of a Radon measure on the dual space if (and only if) φ is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G be an additive subgroup of H and let $G_{pc}^∧$ (resp. $G_b^∧$) be the character group endowed with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It is proved that if a positive-definite function φ on G is continuous in the Gross topology, then φ is the Fourier transform of a Radon measure μ on $G_{pc}^∧$; if φ is continuous in the Sazonov topology, μ can be extended to a Radon measure on $G_b^∧$.
@article{10_4064_sm_126_1_13_25,
author = {W. Banaszczyk},
title = {The {Minlos} lemma for positive-definite functions on additive subgroups of $\ensuremath{\mathbb{R}}^n$},
journal = {Studia Mathematica},
pages = {13--25},
publisher = {mathdoc},
volume = {126},
number = {1},
year = {1997},
doi = {10.4064/sm-126-1-13-25},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/}
}
TY - JOUR AU - W. Banaszczyk TI - The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$ JO - Studia Mathematica PY - 1997 SP - 13 EP - 25 VL - 126 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/ DO - 10.4064/sm-126-1-13-25 LA - en ID - 10_4064_sm_126_1_13_25 ER -
%0 Journal Article %A W. Banaszczyk %T The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$ %J Studia Mathematica %D 1997 %P 13-25 %V 126 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/ %R 10.4064/sm-126-1-13-25 %G en %F 10_4064_sm_126_1_13_25
W. Banaszczyk. The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$. Studia Mathematica, Tome 126 (1997) no. 1, pp. 13-25. doi: 10.4064/sm-126-1-13-25
Cité par Sources :