The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$
Studia Mathematica, Tome 126 (1997) no. 1, pp. 13-25

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let H be a real Hilbert space. It is well known that a positive-definite function φ on H is the Fourier transform of a Radon measure on the dual space if (and only if) φ is continuous in the Sazonov topology (resp. the Gross topology) on H. Let G be an additive subgroup of H and let $G_{pc}^∧$ (resp. $G_b^∧$) be the character group endowed with the topology of uniform convergence on precompact (resp. bounded) subsets of G. It is proved that if a positive-definite function φ on G is continuous in the Gross topology, then φ is the Fourier transform of a Radon measure μ on $G_{pc}^∧$; if φ is continuous in the Sazonov topology, μ can be extended to a Radon measure on $G_b^∧$.
DOI : 10.4064/sm-126-1-13-25

W. Banaszczyk 1

1
@article{10_4064_sm_126_1_13_25,
     author = {W. Banaszczyk},
     title = {The {Minlos} lemma for positive-definite functions on additive subgroups of $\ensuremath{\mathbb{R}}^n$},
     journal = {Studia Mathematica},
     pages = {13--25},
     publisher = {mathdoc},
     volume = {126},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-126-1-13-25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/}
}
TY  - JOUR
AU  - W. Banaszczyk
TI  - The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$
JO  - Studia Mathematica
PY  - 1997
SP  - 13
EP  - 25
VL  - 126
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/
DO  - 10.4064/sm-126-1-13-25
LA  - en
ID  - 10_4064_sm_126_1_13_25
ER  - 
%0 Journal Article
%A W. Banaszczyk
%T The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$
%J Studia Mathematica
%D 1997
%P 13-25
%V 126
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-126-1-13-25/
%R 10.4064/sm-126-1-13-25
%G en
%F 10_4064_sm_126_1_13_25
W. Banaszczyk. The Minlos lemma for positive-definite functions on additive subgroups of $ℝ^n$. Studia Mathematica, Tome 126 (1997) no. 1, pp. 13-25. doi: 10.4064/sm-126-1-13-25

Cité par Sources :