Tauberian operators on $L_1(μ)$ spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 125 (1997) no. 3, pp. 289-303
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We characterize tauberian operators $T:L_1(μ) → Y$ in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in $L_1[0,1]$. As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator $T:L_1(μ) → Y$ is also tauberian, and the induced operator $T̃: L_1(μ)**/L_1(μ) → Y**/Y$ is an isomorphism into. Also, we show that $L_1(μ)$ embeds isomorphically into the quotient of $L_1(μ)$ by any of its reflexive subspaces.
            
            
            
          
        
      @article{10_4064_sm_125_3_289_303,
     author = {Manuel Gonzalez and  },
     title = {Tauberian operators on $L_1(\ensuremath{\mu})$ spaces},
     journal = {Studia Mathematica},
     pages = {289--303},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-125-3-289-303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-289-303/}
}
                      
                      
                    TY - JOUR AU - Manuel Gonzalez AU - TI - Tauberian operators on $L_1(μ)$ spaces JO - Studia Mathematica PY - 1997 SP - 289 EP - 303 VL - 125 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-289-303/ DO - 10.4064/sm-125-3-289-303 LA - en ID - 10_4064_sm_125_3_289_303 ER -
Manuel Gonzalez; . Tauberian operators on $L_1(μ)$ spaces. Studia Mathematica, Tome 125 (1997) no. 3, pp. 289-303. doi: 10.4064/sm-125-3-289-303
Cité par Sources :
