Tauberian operators on $L_1(μ)$ spaces
Studia Mathematica, Tome 125 (1997) no. 3, pp. 289-303

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterize tauberian operators $T:L_1(μ) → Y$ in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in $L_1[0,1]$. As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator $T:L_1(μ) → Y$ is also tauberian, and the induced operator $T̃: L_1(μ)**/L_1(μ) → Y**/Y$ is an isomorphism into. Also, we show that $L_1(μ)$ embeds isomorphically into the quotient of $L_1(μ)$ by any of its reflexive subspaces.
DOI : 10.4064/sm-125-3-289-303

Manuel Gonzalez 1 ;  1

1
@article{10_4064_sm_125_3_289_303,
     author = {Manuel Gonzalez and  },
     title = {Tauberian operators on $L_1(\ensuremath{\mu})$ spaces},
     journal = {Studia Mathematica},
     pages = {289--303},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-125-3-289-303},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-289-303/}
}
TY  - JOUR
AU  - Manuel Gonzalez
AU  -  
TI  - Tauberian operators on $L_1(μ)$ spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 289
EP  - 303
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-289-303/
DO  - 10.4064/sm-125-3-289-303
LA  - en
ID  - 10_4064_sm_125_3_289_303
ER  - 
%0 Journal Article
%A Manuel Gonzalez
%A  
%T Tauberian operators on $L_1(μ)$ spaces
%J Studia Mathematica
%D 1997
%P 289-303
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-289-303/
%R 10.4064/sm-125-3-289-303
%G en
%F 10_4064_sm_125_3_289_303
Manuel Gonzalez;  . Tauberian operators on $L_1(μ)$ spaces. Studia Mathematica, Tome 125 (1997) no. 3, pp. 289-303. doi: 10.4064/sm-125-3-289-303

Cité par Sources :