Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities
Studia Mathematica, Tome 125 (1997) no. 3, pp. 271-287

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We determine the set of all triples 1 ≤ p,q,r ≤ ∞ for which the so-called Marcinkiewicz-Zygmund inequality is satisfied: There exists a constant c≥ 0 such that for each bounded linear operator $T: L_q(μ) → L_p(ν)$, each n ∈ ℕ and functions $f_1,...,f_n ∈ L_q(μ)$, $( ʃ(∑^{n}_{k=1} |Tf_{k}|^r)^{p/r} dν)^{1/p} ≤ c∥T∥(ʃ(∑^{n}_{k=1} |f_k|^{r})^{q/r} dμ)^{1/q}$. This type of inequality includes as special cases well-known inequalities of Paley, Marcinkiewicz, Zygmund, Grothendieck, and Kwapień. If such a Marcinkiewicz-Zygmund inequality holds for a given triple (p,q,r), then we calculate the best constant c ≥ 0 (with the only exception: the important case 1 ≤ p r = 2 q ≤ ∞); if such an inequality does not hold, then we give asymptotically optimal estimates for the graduation of these constants in n. Two problems of Gasch and Maligranda from [9] are solved; as a by-product we obtain best constants of several important inequalities from the theory of summing operators.
DOI : 10.4064/sm-125-3-271-287

Andreas Defant 1 ;  1

1
@article{10_4064_sm_125_3_271_287,
     author = {Andreas Defant and  },
     title = {Best constants and asymptotics of {Marcinkiewicz-Zygmund} inequalities},
     journal = {Studia Mathematica},
     pages = {271--287},
     publisher = {mathdoc},
     volume = {125},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-125-3-271-287},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-271-287/}
}
TY  - JOUR
AU  - Andreas Defant
AU  -  
TI  - Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities
JO  - Studia Mathematica
PY  - 1997
SP  - 271
EP  - 287
VL  - 125
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-271-287/
DO  - 10.4064/sm-125-3-271-287
LA  - en
ID  - 10_4064_sm_125_3_271_287
ER  - 
%0 Journal Article
%A Andreas Defant
%A  
%T Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities
%J Studia Mathematica
%D 1997
%P 271-287
%V 125
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-271-287/
%R 10.4064/sm-125-3-271-287
%G en
%F 10_4064_sm_125_3_271_287
Andreas Defant;  . Best constants and asymptotics of Marcinkiewicz-Zygmund inequalities. Studia Mathematica, Tome 125 (1997) no. 3, pp. 271-287. doi: 10.4064/sm-125-3-271-287

Cité par Sources :