Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients
Studia Mathematica, Tome 125 (1997) no. 3, pp. 231-246
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Our main result is a Hardy type inequality with respect to the two-parameter Vilenkin system (*) $(∑_{k=1}^∞ ∑_{j=1}^∞ |f̂(k,j)|^{p}(kj)^{p-2})^{1/p} ≤ C_p∥f∥_{H^p_{**}}$ (1/2 p≤2) where f belongs to the Hardy space $H_{**}^p (G_m × G_s)$ defined by means of a maximal function. This inequality is extended to p > 2 if the Vilenkin-Fourier coefficients of f form a monotone sequence. We show that the converse of (*) also holds for all p > 0 under the monotonicity assumption.
Keywords:
two-parameter martingales and Hardy spaces, rectangle p-atoms, Vilenkin functions, Hardy-Littlewood inequality
@article{10_4064_sm_125_3_231_246,
author = {P\'eter Simon and },
title = {Hardy type inequalities for two-parameter {Vilenkin-Fourier} coefficients},
journal = {Studia Mathematica},
pages = {231--246},
year = {1997},
volume = {125},
number = {3},
doi = {10.4064/sm-125-3-231-246},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-231-246/}
}
TY - JOUR AU - Péter Simon AU - TI - Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients JO - Studia Mathematica PY - 1997 SP - 231 EP - 246 VL - 125 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-3-231-246/ DO - 10.4064/sm-125-3-231-246 LA - en ID - 10_4064_sm_125_3_231_246 ER -
Péter Simon; . Hardy type inequalities for two-parameter Vilenkin-Fourier coefficients. Studia Mathematica, Tome 125 (1997) no. 3, pp. 231-246. doi: 10.4064/sm-125-3-231-246
Cité par Sources :