Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
Studia Mathematica, Tome 125 (1997) no. 2, pp. 179-186

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that for every infinite-dimensional Banach space X with a Fréchet differentiable norm, the sphere $S_X$ is diffeomorphic to each closed hyperplane in X. We also prove that every infinite-dimensional Banach space Y having a (not necessarily equivalent) $C^p$ norm (with $p ∈ ℕ ∪ {∞}$)$ is $C^p$ diffeomorphic to $Y \ {0}$.
DOI : 10.4064/sm-125-2-179-186
Keywords: $C^p$ smooth norm, spheres and hyperplanes in Banach spaces

Daniel Azagra 1

1
@article{10_4064_sm_125_2_179_186,
     author = {Daniel Azagra},
     title = {Diffeomorphisms between spheres and hyperplanes in infinite-dimensional {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {179--186},
     publisher = {mathdoc},
     volume = {125},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-125-2-179-186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/}
}
TY  - JOUR
AU  - Daniel Azagra
TI  - Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 179
EP  - 186
VL  - 125
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/
DO  - 10.4064/sm-125-2-179-186
LA  - en
ID  - 10_4064_sm_125_2_179_186
ER  - 
%0 Journal Article
%A Daniel Azagra
%T Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
%J Studia Mathematica
%D 1997
%P 179-186
%V 125
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/
%R 10.4064/sm-125-2-179-186
%G en
%F 10_4064_sm_125_2_179_186
Daniel Azagra. Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces. Studia Mathematica, Tome 125 (1997) no. 2, pp. 179-186. doi: 10.4064/sm-125-2-179-186

Cité par Sources :