Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces
Studia Mathematica, Tome 125 (1997) no. 2, pp. 179-186
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for every infinite-dimensional Banach space X with a Fréchet differentiable norm, the sphere $S_X$ is diffeomorphic to each closed hyperplane in X. We also prove that every infinite-dimensional Banach space Y having a (not necessarily equivalent) $C^p$ norm (with $p ∈ ℕ ∪ {∞}$)$ is $C^p$ diffeomorphic to $Y \ {0}$.
Keywords:
$C^p$ smooth norm, spheres and hyperplanes in Banach spaces
Affiliations des auteurs :
Daniel Azagra 1
@article{10_4064_sm_125_2_179_186,
author = {Daniel Azagra},
title = {Diffeomorphisms between spheres and hyperplanes in infinite-dimensional {Banach} spaces},
journal = {Studia Mathematica},
pages = {179--186},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {1997},
doi = {10.4064/sm-125-2-179-186},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/}
}
TY - JOUR AU - Daniel Azagra TI - Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces JO - Studia Mathematica PY - 1997 SP - 179 EP - 186 VL - 125 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/ DO - 10.4064/sm-125-2-179-186 LA - en ID - 10_4064_sm_125_2_179_186 ER -
%0 Journal Article %A Daniel Azagra %T Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces %J Studia Mathematica %D 1997 %P 179-186 %V 125 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-179-186/ %R 10.4064/sm-125-2-179-186 %G en %F 10_4064_sm_125_2_179_186
Daniel Azagra. Diffeomorphisms between spheres and hyperplanes in infinite-dimensional Banach spaces. Studia Mathematica, Tome 125 (1997) no. 2, pp. 179-186. doi: 10.4064/sm-125-2-179-186
Cité par Sources :