An alternative Dunford-Pettis Property
Studia Mathematica, Tome 125 (1997) no. 2, pp. 143-159
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
An alternative to the Dunford-Pettis Property, called the DP1-property, is introduced. Its relationship to the Dunford-Pettis Property and other related properties is examined. It is shown that $ℓ_p$-direct sums of spaces with DP1 have DP1 if 1 ≤ p ∞. It is also shown that for preduals of von Neumann algebras, DP1 is strictly weaker than the Dunford-Pettis Property, while for von Neumann algebras, the two properties are equivalent.
Keywords:
Dunford-Pettis Property, Kadec-Klee Property
Affiliations des auteurs :
Walden Freedman 1
@article{10_4064_sm_125_2_143_159,
author = {Walden Freedman},
title = {An alternative {Dunford-Pettis} {Property}},
journal = {Studia Mathematica},
pages = {143--159},
publisher = {mathdoc},
volume = {125},
number = {2},
year = {1997},
doi = {10.4064/sm-125-2-143-159},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-2-143-159/}
}
Walden Freedman. An alternative Dunford-Pettis Property. Studia Mathematica, Tome 125 (1997) no. 2, pp. 143-159. doi: 10.4064/sm-125-2-143-159
Cité par Sources :