Estimates of Fourier transforms in Sobolev spaces
Studia Mathematica, Tome 125 (1997) no. 1, pp. 67-74
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the Fourier transforms of functions in the Sobolev spaces $W_1^{r_1,..., r_n}$. It is proved that for any function $f ∈ W_1^{r_1,...,r_n}$ the Fourier transform f̂ belongs to the Lorentz space $L^{n/r,1}$, where $r = n(∑_{j=1}^n 1/r_{j})^{-1} ≤ n$. Furthermore, we derive from this result that for any mixed derivative $D^{s}f (f ∈ C_0^∞, s=(s_1,... ,s_n))$ the weighted norm $∥(D^{s}f)^∧∥_{L^1(w)} (w(ξ) = |ξ|^{-n})$ can be estimated by the sum of $L^1$-norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
@article{10_4064_sm_125_1_67_74,
author = {V. I. Kolyada},
title = {Estimates of {Fourier} transforms in {Sobolev} spaces},
journal = {Studia Mathematica},
pages = {67--74},
publisher = {mathdoc},
volume = {125},
number = {1},
year = {1997},
doi = {10.4064/sm-125-1-67-74},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-67-74/}
}
V. I. Kolyada. Estimates of Fourier transforms in Sobolev spaces. Studia Mathematica, Tome 125 (1997) no. 1, pp. 67-74. doi: 10.4064/sm-125-1-67-74
Cité par Sources :