Estimates of Fourier transforms in Sobolev spaces
Studia Mathematica, Tome 125 (1997) no. 1, pp. 67-74

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the Fourier transforms of functions in the Sobolev spaces $W_1^{r_1,..., r_n}$. It is proved that for any function $f ∈ W_1^{r_1,...,r_n}$ the Fourier transform f̂ belongs to the Lorentz space $L^{n/r,1}$, where $r = n(∑_{j=1}^n 1/r_{j})^{-1} ≤ n$. Furthermore, we derive from this result that for any mixed derivative $D^{s}f (f ∈ C_0^∞, s=(s_1,... ,s_n))$ the weighted norm $∥(D^{s}f)^∧∥_{L^1(w)} (w(ξ) = |ξ|^{-n})$ can be estimated by the sum of $L^1$-norms of all pure derivatives of the same order. This gives an answer to a question posed by A. Pełczyński and M. Wojciechowski.
DOI : 10.4064/sm-125-1-67-74

V. I. Kolyada 1

1
@article{10_4064_sm_125_1_67_74,
     author = {V. I. Kolyada},
     title = {Estimates of {Fourier} transforms in {Sobolev} spaces},
     journal = {Studia Mathematica},
     pages = {67--74},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-125-1-67-74},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-67-74/}
}
TY  - JOUR
AU  - V. I. Kolyada
TI  - Estimates of Fourier transforms in Sobolev spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 67
EP  - 74
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-67-74/
DO  - 10.4064/sm-125-1-67-74
LA  - en
ID  - 10_4064_sm_125_1_67_74
ER  - 
%0 Journal Article
%A V. I. Kolyada
%T Estimates of Fourier transforms in Sobolev spaces
%J Studia Mathematica
%D 1997
%P 67-74
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-67-74/
%R 10.4064/sm-125-1-67-74
%G en
%F 10_4064_sm_125_1_67_74
V. I. Kolyada. Estimates of Fourier transforms in Sobolev spaces. Studia Mathematica, Tome 125 (1997) no. 1, pp. 67-74. doi: 10.4064/sm-125-1-67-74

Cité par Sources :