Pointwise multipliers on weighted BMO spaces
Studia Mathematica, Tome 125 (1997) no. 1, pp. 35-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p ∞ and for $ϕ: X×ℝ_{+} → ℝ_{+}$, we denote by $bmo_{ϕ,p}(X)$ the set of all functions $f ∈ L^{p}_{loc}(X)$ such that $sup_{a ∈ X, r>0} 1/ϕ(a,r) (1/μ(B(a,r)) ʃ_{B(a,r)} |f(x) -f_{B(a,r)}|^p dμ)^{1/p} ∞$, where B(a,r) is the ball centered at a and of radius r, and $f_{B(a,r)}$ is the integral mean of f on B(a,r). Let $bmo_{ϕ}(X) = bmo_{ϕ,1}(X)$ and $bmo(X) = bmo_{1,1}(X)$. In this paper, we characterize $PWM(bmo_{ϕ1,p_1}(X), bmo_{ϕ2,p_2}(X))$. The following are examples of our results. $PWM(bmo_{(log(1/r))^{-α}}(
Keywords:
multiplier, pointwise multiplier, bounded mean oscillation, space of homogeneous type
Affiliations des auteurs :
Eiichi Nakai 1
@article{10_4064_sm_125_1_35_56,
author = {Eiichi Nakai},
title = {Pointwise multipliers on weighted {BMO} spaces},
journal = {Studia Mathematica},
pages = {35--56},
publisher = {mathdoc},
volume = {125},
number = {1},
year = {1997},
doi = {10.4064/sm-125-1-35-56},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-35-56/}
}
Eiichi Nakai. Pointwise multipliers on weighted BMO spaces. Studia Mathematica, Tome 125 (1997) no. 1, pp. 35-56. doi: 10.4064/sm-125-1-35-56
Cité par Sources :