On a weak type (1,1) inequality for a maximal conjugate function
Studia Mathematica, Tome 125 (1997) no. 1, pp. 13-21

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of $H^p$ spaces for 0 p ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.
DOI : 10.4064/sm-125-1-13-21

Nakhlé H. Asmar 1 ; Stephen J. Montgomery-Smith 1

1
@article{10_4064_sm_125_1_13_21,
     author = {Nakhl\'e H. Asmar and Stephen J. Montgomery-Smith},
     title = {On a weak type (1,1) inequality for a maximal conjugate function},
     journal = {Studia Mathematica},
     pages = {13--21},
     publisher = {mathdoc},
     volume = {125},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-125-1-13-21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/}
}
TY  - JOUR
AU  - Nakhlé H. Asmar
AU  - Stephen J. Montgomery-Smith
TI  - On a weak type (1,1) inequality for a maximal conjugate function
JO  - Studia Mathematica
PY  - 1997
SP  - 13
EP  - 21
VL  - 125
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/
DO  - 10.4064/sm-125-1-13-21
LA  - en
ID  - 10_4064_sm_125_1_13_21
ER  - 
%0 Journal Article
%A Nakhlé H. Asmar
%A Stephen J. Montgomery-Smith
%T On a weak type (1,1) inequality for a maximal conjugate function
%J Studia Mathematica
%D 1997
%P 13-21
%V 125
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/
%R 10.4064/sm-125-1-13-21
%G en
%F 10_4064_sm_125_1_13_21
Nakhlé H. Asmar; Stephen J. Montgomery-Smith. On a weak type (1,1) inequality for a maximal conjugate function. Studia Mathematica, Tome 125 (1997) no. 1, pp. 13-21. doi: 10.4064/sm-125-1-13-21

Cité par Sources :