On a weak type (1,1) inequality for a maximal conjugate function
Studia Mathematica, Tome 125 (1997) no. 1, pp. 13-21
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In their celebrated paper [3], Burkholder, Gundy, and Silverstein used Brownian motion to derive a maximal function characterization of $H^p$ spaces for 0 p ∞. In the present paper, we show that the methods in [3] extend to higher dimensions and yield a dimension-free weak type (1,1) estimate for a conjugate function on the N-dimensional torus.
Affiliations des auteurs :
Nakhlé H. Asmar 1 ; Stephen J. Montgomery-Smith 1
@article{10_4064_sm_125_1_13_21,
author = {Nakhl\'e H. Asmar and Stephen J. Montgomery-Smith},
title = {On a weak type (1,1) inequality for a maximal conjugate function},
journal = {Studia Mathematica},
pages = {13--21},
publisher = {mathdoc},
volume = {125},
number = {1},
year = {1997},
doi = {10.4064/sm-125-1-13-21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/}
}
TY - JOUR AU - Nakhlé H. Asmar AU - Stephen J. Montgomery-Smith TI - On a weak type (1,1) inequality for a maximal conjugate function JO - Studia Mathematica PY - 1997 SP - 13 EP - 21 VL - 125 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/ DO - 10.4064/sm-125-1-13-21 LA - en ID - 10_4064_sm_125_1_13_21 ER -
%0 Journal Article %A Nakhlé H. Asmar %A Stephen J. Montgomery-Smith %T On a weak type (1,1) inequality for a maximal conjugate function %J Studia Mathematica %D 1997 %P 13-21 %V 125 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-125-1-13-21/ %R 10.4064/sm-125-1-13-21 %G en %F 10_4064_sm_125_1_13_21
Nakhlé H. Asmar; Stephen J. Montgomery-Smith. On a weak type (1,1) inequality for a maximal conjugate function. Studia Mathematica, Tome 125 (1997) no. 1, pp. 13-21. doi: 10.4064/sm-125-1-13-21
Cité par Sources :