Subanalytic version of Whitney's extension theorem
Studia Mathematica, Tome 124 (1997) no. 3, pp. 269-280

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
DOI : 10.4064/sm-124-3-269-280

Krzysztof Kurdyka 1 ; Wiesław Pawłucki 1

1
@article{10_4064_sm_124_3_269_280,
     author = {Krzysztof Kurdyka and Wies{\l}aw Paw{\l}ucki},
     title = {Subanalytic version of {Whitney's} extension theorem},
     journal = {Studia Mathematica},
     pages = {269--280},
     publisher = {mathdoc},
     volume = {124},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-124-3-269-280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/}
}
TY  - JOUR
AU  - Krzysztof Kurdyka
AU  - Wiesław Pawłucki
TI  - Subanalytic version of Whitney's extension theorem
JO  - Studia Mathematica
PY  - 1997
SP  - 269
EP  - 280
VL  - 124
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/
DO  - 10.4064/sm-124-3-269-280
LA  - en
ID  - 10_4064_sm_124_3_269_280
ER  - 
%0 Journal Article
%A Krzysztof Kurdyka
%A Wiesław Pawłucki
%T Subanalytic version of Whitney's extension theorem
%J Studia Mathematica
%D 1997
%P 269-280
%V 124
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/
%R 10.4064/sm-124-3-269-280
%G en
%F 10_4064_sm_124_3_269_280
Krzysztof Kurdyka; Wiesław Pawłucki. Subanalytic version of Whitney's extension theorem. Studia Mathematica, Tome 124 (1997) no. 3, pp. 269-280. doi: 10.4064/sm-124-3-269-280

Cité par Sources :