Subanalytic version of Whitney's extension theorem
Studia Mathematica, Tome 124 (1997) no. 3, pp. 269-280
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any subanalytic $C^k$-Whitney field (k finite), we construct its subanalytic $C^k$-extension to $ℝ^n$. Our method also applies to other o-minimal structures; e.g., to semialgebraic Whitney fields.
Affiliations des auteurs :
Krzysztof Kurdyka 1 ; Wiesław Pawłucki 1
@article{10_4064_sm_124_3_269_280,
author = {Krzysztof Kurdyka and Wies{\l}aw Paw{\l}ucki},
title = {Subanalytic version of {Whitney's} extension theorem},
journal = {Studia Mathematica},
pages = {269--280},
publisher = {mathdoc},
volume = {124},
number = {3},
year = {1997},
doi = {10.4064/sm-124-3-269-280},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/}
}
TY - JOUR AU - Krzysztof Kurdyka AU - Wiesław Pawłucki TI - Subanalytic version of Whitney's extension theorem JO - Studia Mathematica PY - 1997 SP - 269 EP - 280 VL - 124 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/ DO - 10.4064/sm-124-3-269-280 LA - en ID - 10_4064_sm_124_3_269_280 ER -
%0 Journal Article %A Krzysztof Kurdyka %A Wiesław Pawłucki %T Subanalytic version of Whitney's extension theorem %J Studia Mathematica %D 1997 %P 269-280 %V 124 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-3-269-280/ %R 10.4064/sm-124-3-269-280 %G en %F 10_4064_sm_124_3_269_280
Krzysztof Kurdyka; Wiesław Pawłucki. Subanalytic version of Whitney's extension theorem. Studia Mathematica, Tome 124 (1997) no. 3, pp. 269-280. doi: 10.4064/sm-124-3-269-280
Cité par Sources :