On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space
Studia Mathematica, Tome 124 (1997) no. 2, pp. 173-178
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that for every positive integer d there exists a $ℤ^d$-action and an extremal σ-algebra of it which is not perfect.
@article{10_4064_sm_124_2_173_178,
author = {B. Kami\'nski and and },
title = {On extremal and perfect \ensuremath{\sigma}-algebras for $\ensuremath{\mathbb{Z}}^{d}$-actions on a {Lebesgue} space},
journal = {Studia Mathematica},
pages = {173--178},
year = {1997},
volume = {124},
number = {2},
doi = {10.4064/sm-124-2-173-178},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-173-178/}
}
TY - JOUR
AU - B. Kamiński
AU -
AU -
TI - On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space
JO - Studia Mathematica
PY - 1997
SP - 173
EP - 178
VL - 124
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-173-178/
DO - 10.4064/sm-124-2-173-178
LA - fr
ID - 10_4064_sm_124_2_173_178
ER -
B. Kamiński; ; . On extremal and perfect σ-algebras for $ℤ^{d}$-actions on a Lebesgue space. Studia Mathematica, Tome 124 (1997) no. 2, pp. 173-178. doi: 10.4064/sm-124-2-173-178
Cité par Sources :