Operators determining the complete norm topology of C(K)
Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and $x_{0} ∈ A$, we show that every complete norm on A which makes continuous the multiplication by $x_{0}$ is equivalent to $∥·∥_{∞}$ provided that $x_{0}^{-1}(λ)$ has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
DOI : 10.4064/sm-124-2-155-160

A. R. Villena 1

1
@article{10_4064_sm_124_2_155_160,
     author = {A. R. Villena},
     title = {Operators determining the complete norm topology of {C(K)}},
     journal = {Studia Mathematica},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-124-2-155-160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/}
}
TY  - JOUR
AU  - A. R. Villena
TI  - Operators determining the complete norm topology of C(K)
JO  - Studia Mathematica
PY  - 1997
SP  - 155
EP  - 160
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/
DO  - 10.4064/sm-124-2-155-160
LA  - en
ID  - 10_4064_sm_124_2_155_160
ER  - 
%0 Journal Article
%A A. R. Villena
%T Operators determining the complete norm topology of C(K)
%J Studia Mathematica
%D 1997
%P 155-160
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/
%R 10.4064/sm-124-2-155-160
%G en
%F 10_4064_sm_124_2_155_160
A. R. Villena. Operators determining the complete norm topology of C(K). Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160. doi: 10.4064/sm-124-2-155-160

Cité par Sources :