Operators determining the complete norm topology of C(K)
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and $x_{0} ∈ A$, we show that every complete norm on A which makes continuous the multiplication by $x_{0}$ is equivalent to $∥·∥_{∞}$ provided that $x_{0}^{-1}(λ)$ has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
            
            
            
          
        
      @article{10_4064_sm_124_2_155_160,
     author = {A. R. Villena},
     title = {Operators determining the complete norm topology of {C(K)}},
     journal = {Studia Mathematica},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-124-2-155-160},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/}
}
                      
                      
                    TY - JOUR AU - A. R. Villena TI - Operators determining the complete norm topology of C(K) JO - Studia Mathematica PY - 1997 SP - 155 EP - 160 VL - 124 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/ DO - 10.4064/sm-124-2-155-160 LA - en ID - 10_4064_sm_124_2_155_160 ER -
A. R. Villena. Operators determining the complete norm topology of C(K). Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160. doi: 10.4064/sm-124-2-155-160
Cité par Sources :
