Operators determining the complete norm topology of C(K)
Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For any uniformly closed subalgebra A of C(K) for a compact Hausdorff space K without isolated points and $x_{0} ∈ A$, we show that every complete norm on A which makes continuous the multiplication by $x_{0}$ is equivalent to $∥·∥_{∞}$ provided that $x_{0}^{-1}(λ)$ has no interior points whenever λ lies in ℂ. Actually, these assertions are equivalent if A = C(K).
@article{10_4064_sm_124_2_155_160,
author = {A. R. Villena},
title = {Operators determining the complete norm topology of {C(K)}},
journal = {Studia Mathematica},
pages = {155--160},
year = {1997},
volume = {124},
number = {2},
doi = {10.4064/sm-124-2-155-160},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-155-160/}
}
A. R. Villena. Operators determining the complete norm topology of C(K). Studia Mathematica, Tome 124 (1997) no. 2, pp. 155-160. doi: 10.4064/sm-124-2-155-160
Cité par Sources :