Minimality in asymmetry classes
Studia Mathematica, Tome 124 (1997) no. 2, pp. 149-154

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We examine minimality in asymmetry classes of convex compact sets with respect to inclusion. We prove that each class has a minimal element. Moreover, we show there is a connection between asymmetry classes and the Rådström-Hörmander lattice. This is used to present an alternative solution to the problem of minimality posed by G. Ewald and G. C. Shephard in [4].
DOI : 10.4064/sm-124-2-149-154
Keywords: convex sets, symmetry, minimality, Hausdorff metric

Michał Wiernowolski 1

1
@article{10_4064_sm_124_2_149_154,
     author = {Micha{\l} Wiernowolski},
     title = {Minimality in asymmetry classes},
     journal = {Studia Mathematica},
     pages = {149--154},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-124-2-149-154},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-149-154/}
}
TY  - JOUR
AU  - Michał Wiernowolski
TI  - Minimality in asymmetry classes
JO  - Studia Mathematica
PY  - 1997
SP  - 149
EP  - 154
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-149-154/
DO  - 10.4064/sm-124-2-149-154
LA  - en
ID  - 10_4064_sm_124_2_149_154
ER  - 
%0 Journal Article
%A Michał Wiernowolski
%T Minimality in asymmetry classes
%J Studia Mathematica
%D 1997
%P 149-154
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-149-154/
%R 10.4064/sm-124-2-149-154
%G en
%F 10_4064_sm_124_2_149_154
Michał Wiernowolski. Minimality in asymmetry classes. Studia Mathematica, Tome 124 (1997) no. 2, pp. 149-154. doi: 10.4064/sm-124-2-149-154

Cité par Sources :