Minimality in asymmetry classes
Studia Mathematica, Tome 124 (1997) no. 2, pp. 149-154
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We examine minimality in asymmetry classes of convex compact sets with respect to inclusion. We prove that each class has a minimal element. Moreover, we show there is a connection between asymmetry classes and the Rådström-Hörmander lattice. This is used to present an alternative solution to the problem of minimality posed by G. Ewald and G. C. Shephard in [4].
Keywords:
convex sets, symmetry, minimality, Hausdorff metric
Affiliations des auteurs :
Michał Wiernowolski 1
@article{10_4064_sm_124_2_149_154,
author = {Micha{\l} Wiernowolski},
title = {Minimality in asymmetry classes},
journal = {Studia Mathematica},
pages = {149--154},
publisher = {mathdoc},
volume = {124},
number = {2},
year = {1997},
doi = {10.4064/sm-124-2-149-154},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-149-154/}
}
Michał Wiernowolski. Minimality in asymmetry classes. Studia Mathematica, Tome 124 (1997) no. 2, pp. 149-154. doi: 10.4064/sm-124-2-149-154
Cité par Sources :