Convergence of conditional expectations for unbounded closed convex random sets
Studia Mathematica, Tome 124 (1997) no. 2, pp. 133-148

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form $E^{ℬ_n}X_n$ where $(ℬ_n)$ is a decreasing sequence of sub-σ-algebras and $(X_n)$ is a sequence of closed convex random sets in a separable Banach space.
DOI : 10.4064/sm-124-2-133-148

Charles Castaing 1 ;  1 ;  1

1
@article{10_4064_sm_124_2_133_148,
     author = {Charles Castaing and   and  },
     title = {Convergence of conditional expectations for unbounded closed convex random sets},
     journal = {Studia Mathematica},
     pages = {133--148},
     publisher = {mathdoc},
     volume = {124},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-124-2-133-148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-133-148/}
}
TY  - JOUR
AU  - Charles Castaing
AU  -  
AU  -  
TI  - Convergence of conditional expectations for unbounded closed convex random sets
JO  - Studia Mathematica
PY  - 1997
SP  - 133
EP  - 148
VL  - 124
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-133-148/
DO  - 10.4064/sm-124-2-133-148
LA  - en
ID  - 10_4064_sm_124_2_133_148
ER  - 
%0 Journal Article
%A Charles Castaing
%A  
%A  
%T Convergence of conditional expectations for unbounded closed convex random sets
%J Studia Mathematica
%D 1997
%P 133-148
%V 124
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-2-133-148/
%R 10.4064/sm-124-2-133-148
%G en
%F 10_4064_sm_124_2_133_148
Charles Castaing;  ;  . Convergence of conditional expectations for unbounded closed convex random sets. Studia Mathematica, Tome 124 (1997) no. 2, pp. 133-148. doi: 10.4064/sm-124-2-133-148

Cité par Sources :