On a function that realizes the maximal spectral type
Studia Mathematica, Tome 124 (1997) no. 1, pp. 1-7
We show that for a unitary operator U on $L^2(X,μ)$, where X is a compact manifold of class $C^r$, $r ∈ ℕ ∪ {∞,ω}$, and μ is a finite Borel measure on X, there exists a $C^r$ function that realizes the maximal spectral type of U.
@article{10_4064_sm_124_1_1_7,
author = {Krzysztof M. Fr\k{a}czek},
title = {On a function that realizes the maximal spectral type},
journal = {Studia Mathematica},
pages = {1--7},
year = {1997},
volume = {124},
number = {1},
doi = {10.4064/sm-124-1-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-1-1-7/}
}
Krzysztof M. Frączek. On a function that realizes the maximal spectral type. Studia Mathematica, Tome 124 (1997) no. 1, pp. 1-7. doi: 10.4064/sm-124-1-1-7
Cité par Sources :