On a function that realizes the maximal spectral type
Studia Mathematica, Tome 124 (1997) no. 1, pp. 1-7
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We show that for a unitary operator U on $L^2(X,μ)$, where X is a compact manifold of class $C^r$, $r ∈ ℕ ∪ {∞,ω}$, and μ is a finite Borel measure on X, there exists a $C^r$ function that realizes the maximal spectral type of U.
@article{10_4064_sm_124_1_1_7,
     author = {Krzysztof M. Fr\k{a}czek},
     title = {On a function that realizes the maximal spectral type},
     journal = {Studia Mathematica},
     pages = {1--7},
     year = {1997},
     volume = {124},
     number = {1},
     doi = {10.4064/sm-124-1-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-124-1-1-7/}
}
TY  - JOUR
AU  - Krzysztof M. Frączek
TI  - On a function that realizes the maximal spectral type
JO  - Studia Mathematica
PY  - 1997
SP  - 1
EP  - 7
VL  - 124
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-124-1-1-7/
DO  - 10.4064/sm-124-1-1-7
LA  - en
ID  - 10_4064_sm_124_1_1_7
ER  - 
%0 Journal Article
%A Krzysztof M. Frączek
%T On a function that realizes the maximal spectral type
%J Studia Mathematica
%D 1997
%P 1-7
%V 124
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-124-1-1-7/
%R 10.4064/sm-124-1-1-7
%G en
%F 10_4064_sm_124_1_1_7
Krzysztof M. Frączek. On a function that realizes the maximal spectral type. Studia Mathematica, Tome 124 (1997) no. 1, pp. 1-7. doi: 10.4064/sm-124-1-1-7

Cité par Sources :