Standard exact projective resolutions relative to a countable class of Fréchet spaces
Studia Mathematica, Tome 123 (1997) no. 3, pp. 275-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We will show that for each sequence of quasinormable Fréchet spaces $(E_n)_ℕ$ there is a Köthe space λ such that $Ext^1(λ(A), λ(A) = Ext^1 (λ(A), E_n)=0$ and there are exact sequences of the form $... → λ(A) → λ(A) → λ(A) → λ(A) → {E_n} → 0$. If, for a fixed ℕ, $E_n$ is nuclear or a Köthe sequence space, the resolution above may be reduced to a short exact sequence of the form $0 → λ(A) → λ(A) → {E_n} → 0$. The result has some applications in the theory of the functor $Ext^1$ in various categories of Fréchet spaces by providing a substitute for non-existing projective resolutions.
Mots-clés :
Fréchet spaces, Köthe sequence spaces, splitting of short exact sequences, nuclear spaces, Schwartz spaces, quasinormable spaces, functor $Ext^1$, projective spaces, projective resolution
Affiliations des auteurs :
P. Domański 1 ;  1 ;  1
@article{10_4064_sm_123_3_275_290,
author = {P. Doma\'nski and and },
title = {Standard exact projective resolutions relative to a countable class of {Fr\'echet} spaces},
journal = {Studia Mathematica},
pages = {275--290},
publisher = {mathdoc},
volume = {123},
number = {3},
year = {1997},
doi = {10.4064/sm-123-3-275-290},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-275-290/}
}
TY - JOUR AU - P. Domański AU - AU - TI - Standard exact projective resolutions relative to a countable class of Fréchet spaces JO - Studia Mathematica PY - 1997 SP - 275 EP - 290 VL - 123 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-275-290/ DO - 10.4064/sm-123-3-275-290 LA - fr ID - 10_4064_sm_123_3_275_290 ER -
%0 Journal Article %A P. Domański %A %A %T Standard exact projective resolutions relative to a countable class of Fréchet spaces %J Studia Mathematica %D 1997 %P 275-290 %V 123 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-275-290/ %R 10.4064/sm-123-3-275-290 %G fr %F 10_4064_sm_123_3_275_290
P. Domański; ; . Standard exact projective resolutions relative to a countable class of Fréchet spaces. Studia Mathematica, Tome 123 (1997) no. 3, pp. 275-290. doi: 10.4064/sm-123-3-275-290
Cité par Sources :