Compact homomorphisms between algebras of analytic functions
Studia Mathematica, Tome 123 (1997) no. 3, pp. 235-247

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that every weakly compact multiplicative linear continuous map from $H^∞(D)$ into $H^∞(D)$ is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra $H^∞(B_E)$, where $B_E$ is the open unit ball of an infinite-dimensional Banach space E.
DOI : 10.4064/sm-123-3-235-247

Richard Aron 1 ;  1 ;  1

1
@article{10_4064_sm_123_3_235_247,
     author = {Richard Aron and   and  },
     title = {Compact homomorphisms between algebras of analytic functions},
     journal = {Studia Mathematica},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {123},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-123-3-235-247},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-235-247/}
}
TY  - JOUR
AU  - Richard Aron
AU  -  
AU  -  
TI  - Compact homomorphisms between algebras of analytic functions
JO  - Studia Mathematica
PY  - 1997
SP  - 235
EP  - 247
VL  - 123
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-235-247/
DO  - 10.4064/sm-123-3-235-247
LA  - en
ID  - 10_4064_sm_123_3_235_247
ER  - 
%0 Journal Article
%A Richard Aron
%A  
%A  
%T Compact homomorphisms between algebras of analytic functions
%J Studia Mathematica
%D 1997
%P 235-247
%V 123
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-235-247/
%R 10.4064/sm-123-3-235-247
%G en
%F 10_4064_sm_123_3_235_247
Richard Aron;  ;  . Compact homomorphisms between algebras of analytic functions. Studia Mathematica, Tome 123 (1997) no. 3, pp. 235-247. doi: 10.4064/sm-123-3-235-247

Cité par Sources :