Compact homomorphisms between algebras of analytic functions
Studia Mathematica, Tome 123 (1997) no. 3, pp. 235-247
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every weakly compact multiplicative linear continuous map from $H^∞(D)$ into $H^∞(D)$ is compact. We also give an example which shows that this is not generally true for uniform algebras. Finally, we characterize the spectra of compact composition operators acting on the uniform algebra $H^∞(B_E)$, where $B_E$ is the open unit ball of an infinite-dimensional Banach space E.
Affiliations des auteurs :
Richard Aron 1 ;  1 ;  1
@article{10_4064_sm_123_3_235_247,
author = {Richard Aron and and },
title = {Compact homomorphisms between algebras of analytic functions},
journal = {Studia Mathematica},
pages = {235--247},
publisher = {mathdoc},
volume = {123},
number = {3},
year = {1997},
doi = {10.4064/sm-123-3-235-247},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-235-247/}
}
TY - JOUR AU - Richard Aron AU - AU - TI - Compact homomorphisms between algebras of analytic functions JO - Studia Mathematica PY - 1997 SP - 235 EP - 247 VL - 123 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-3-235-247/ DO - 10.4064/sm-123-3-235-247 LA - en ID - 10_4064_sm_123_3_235_247 ER -
Richard Aron; ; . Compact homomorphisms between algebras of analytic functions. Studia Mathematica, Tome 123 (1997) no. 3, pp. 235-247. doi: 10.4064/sm-123-3-235-247
Cité par Sources :