On a theorem of Gelfand and its local generalizations
Studia Mathematica, Tome 123 (1997) no. 2, pp. 185-194

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = {1}, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille's results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand's theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.
DOI : 10.4064/sm-123-2-185-194
Keywords: locally power-bounded operator, local spectrum, local spectral radius

Driss Drissi 1

1
@article{10_4064_sm_123_2_185_194,
     author = {Driss Drissi},
     title = {On a theorem of {Gelfand} and its local generalizations},
     journal = {Studia Mathematica},
     pages = {185--194},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-123-2-185-194},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-185-194/}
}
TY  - JOUR
AU  - Driss Drissi
TI  - On a theorem of Gelfand and its local generalizations
JO  - Studia Mathematica
PY  - 1997
SP  - 185
EP  - 194
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-185-194/
DO  - 10.4064/sm-123-2-185-194
LA  - en
ID  - 10_4064_sm_123_2_185_194
ER  - 
%0 Journal Article
%A Driss Drissi
%T On a theorem of Gelfand and its local generalizations
%J Studia Mathematica
%D 1997
%P 185-194
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-185-194/
%R 10.4064/sm-123-2-185-194
%G en
%F 10_4064_sm_123_2_185_194
Driss Drissi. On a theorem of Gelfand and its local generalizations. Studia Mathematica, Tome 123 (1997) no. 2, pp. 185-194. doi: 10.4064/sm-123-2-185-194

Cité par Sources :