Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider distributional solutions to the Dirichlet problem for nonlinear elliptic systems of the type ${ div A(x, u, Du) = div f in Ω, u - u_0 ∈ W^{1,r}_0(Ω)$ with r less than the natural exponent p which appears in the coercivity and growth assumptions for the operator A. We prove that $Du ∈ W^{1,p}(Ω)$ if |r-p| is small enough.
@article{10_4064_sm_123_2_175_184,
author = {Daniela Giachetti and },
title = {Boundary higher integrability for the gradient of distributional solutions of nonlinear systems},
journal = {Studia Mathematica},
pages = {175--184},
year = {1997},
volume = {123},
number = {2},
doi = {10.4064/sm-123-2-175-184},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/}
}
TY - JOUR AU - Daniela Giachetti AU - TI - Boundary higher integrability for the gradient of distributional solutions of nonlinear systems JO - Studia Mathematica PY - 1997 SP - 175 EP - 184 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/ DO - 10.4064/sm-123-2-175-184 LA - en ID - 10_4064_sm_123_2_175_184 ER -
%0 Journal Article %A Daniela Giachetti %A %T Boundary higher integrability for the gradient of distributional solutions of nonlinear systems %J Studia Mathematica %D 1997 %P 175-184 %V 123 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/ %R 10.4064/sm-123-2-175-184 %G en %F 10_4064_sm_123_2_175_184
Daniela Giachetti; . Boundary higher integrability for the gradient of distributional solutions of nonlinear systems. Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184. doi: 10.4064/sm-123-2-175-184
Cité par Sources :