Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider distributional solutions to the Dirichlet problem for nonlinear elliptic systems of the type ${ div A(x, u, Du) = div f in Ω, u - u_0 ∈ W^{1,r}_0(Ω)$ with r less than the natural exponent p which appears in the coercivity and growth assumptions for the operator A. We prove that $Du ∈ W^{1,p}(Ω)$ if |r-p| is small enough.
@article{10_4064_sm_123_2_175_184,
author = {Daniela Giachetti and },
title = {Boundary higher integrability for the gradient of distributional solutions of nonlinear systems},
journal = {Studia Mathematica},
pages = {175--184},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {1997},
doi = {10.4064/sm-123-2-175-184},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/}
}
TY - JOUR AU - Daniela Giachetti AU - TI - Boundary higher integrability for the gradient of distributional solutions of nonlinear systems JO - Studia Mathematica PY - 1997 SP - 175 EP - 184 VL - 123 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/ DO - 10.4064/sm-123-2-175-184 LA - en ID - 10_4064_sm_123_2_175_184 ER -
%0 Journal Article %A Daniela Giachetti %A %T Boundary higher integrability for the gradient of distributional solutions of nonlinear systems %J Studia Mathematica %D 1997 %P 175-184 %V 123 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/ %R 10.4064/sm-123-2-175-184 %G en %F 10_4064_sm_123_2_175_184
Daniela Giachetti; . Boundary higher integrability for the gradient of distributional solutions of nonlinear systems. Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184. doi: 10.4064/sm-123-2-175-184
Cité par Sources :