Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider distributional solutions to the Dirichlet problem for nonlinear elliptic systems of the type ${ div A(x, u, Du) = div f in Ω, u - u_0 ∈ W^{1,r}_0(Ω)$ with r less than the natural exponent p which appears in the coercivity and growth assumptions for the operator A. We prove that $Du ∈ W^{1,p}(Ω)$ if |r-p| is small enough.
DOI : 10.4064/sm-123-2-175-184

Daniela Giachetti 1 ;  1

1
@article{10_4064_sm_123_2_175_184,
     author = {Daniela Giachetti and  },
     title = {Boundary higher integrability for the gradient of distributional solutions of nonlinear systems},
     journal = {Studia Mathematica},
     pages = {175--184},
     publisher = {mathdoc},
     volume = {123},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-123-2-175-184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/}
}
TY  - JOUR
AU  - Daniela Giachetti
AU  -  
TI  - Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
JO  - Studia Mathematica
PY  - 1997
SP  - 175
EP  - 184
VL  - 123
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/
DO  - 10.4064/sm-123-2-175-184
LA  - en
ID  - 10_4064_sm_123_2_175_184
ER  - 
%0 Journal Article
%A Daniela Giachetti
%A  
%T Boundary higher integrability for the gradient of distributional solutions of nonlinear systems
%J Studia Mathematica
%D 1997
%P 175-184
%V 123
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-175-184/
%R 10.4064/sm-123-2-175-184
%G en
%F 10_4064_sm_123_2_175_184
Daniela Giachetti;  . Boundary higher integrability for the gradient of distributional solutions of nonlinear systems. Studia Mathematica, Tome 123 (1997) no. 2, pp. 175-184. doi: 10.4064/sm-123-2-175-184

Cité par Sources :