A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have $C^∞$ extensions from any subpolysector; the Gevrey case is included.
@article{10_4064_sm_123_2_151_163,
     author = {M. A.  Zurro},
     title = {A new {Taylor} type formula and $C^\ensuremath{\infty}$ extensions for asymptotically developable functions},
     journal = {Studia Mathematica},
     pages = {151--163},
     year = {1997},
     volume = {123},
     number = {2},
     doi = {10.4064/sm-123-2-151-163},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/}
}
TY  - JOUR
AU  - M. A.  Zurro
TI  - A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
JO  - Studia Mathematica
PY  - 1997
SP  - 151
EP  - 163
VL  - 123
IS  - 2
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/
DO  - 10.4064/sm-123-2-151-163
LA  - en
ID  - 10_4064_sm_123_2_151_163
ER  - 
%0 Journal Article
%A M. A.  Zurro
%T A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
%J Studia Mathematica
%D 1997
%P 151-163
%V 123
%N 2
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/
%R 10.4064/sm-123-2-151-163
%G en
%F 10_4064_sm_123_2_151_163
M. A.  Zurro. A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions. Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163. doi: 10.4064/sm-123-2-151-163

Cité par Sources :