A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have $C^∞$ extensions from any subpolysector; the Gevrey case is included.
@article{10_4064_sm_123_2_151_163,
author = {M. A. Zurro},
title = {A new {Taylor} type formula and $C^\ensuremath{\infty}$ extensions for asymptotically developable functions},
journal = {Studia Mathematica},
pages = {151--163},
publisher = {mathdoc},
volume = {123},
number = {2},
year = {1997},
doi = {10.4064/sm-123-2-151-163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/}
}
TY - JOUR AU - M. A. Zurro TI - A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions JO - Studia Mathematica PY - 1997 SP - 151 EP - 163 VL - 123 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/ DO - 10.4064/sm-123-2-151-163 LA - en ID - 10_4064_sm_123_2_151_163 ER -
%0 Journal Article %A M. A. Zurro %T A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions %J Studia Mathematica %D 1997 %P 151-163 %V 123 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/ %R 10.4064/sm-123-2-151-163 %G en %F 10_4064_sm_123_2_151_163
M. A. Zurro. A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions. Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163. doi: 10.4064/sm-123-2-151-163
Cité par Sources :