A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions
Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163
The paper studies the relation between asymptotically developable functions in several complex variables and their extensions as functions of real variables. A new Taylor type formula with integral remainder in several variables is an essential tool. We prove that strongly asymptotically developable functions defined on polysectors have $C^∞$ extensions from any subpolysector; the Gevrey case is included.
@article{10_4064_sm_123_2_151_163,
author = {M. A. Zurro},
title = {A new {Taylor} type formula and $C^\ensuremath{\infty}$ extensions for asymptotically developable functions},
journal = {Studia Mathematica},
pages = {151--163},
year = {1997},
volume = {123},
number = {2},
doi = {10.4064/sm-123-2-151-163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/}
}
TY - JOUR AU - M. A. Zurro TI - A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions JO - Studia Mathematica PY - 1997 SP - 151 EP - 163 VL - 123 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/ DO - 10.4064/sm-123-2-151-163 LA - en ID - 10_4064_sm_123_2_151_163 ER -
%0 Journal Article %A M. A. Zurro %T A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions %J Studia Mathematica %D 1997 %P 151-163 %V 123 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-2-151-163/ %R 10.4064/sm-123-2-151-163 %G en %F 10_4064_sm_123_2_151_163
M. A. Zurro. A new Taylor type formula and $C^∞$ extensions for asymptotically developable functions. Studia Mathematica, Tome 123 (1997) no. 2, pp. 151-163. doi: 10.4064/sm-123-2-151-163
Cité par Sources :