Moment inequalities for sums of certain independent symmetric random variables
Studia Mathematica, Tome 123 (1997) no. 1, pp. 15-42

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper gives upper and lower bounds for moments of sums of independent random variables $(X_k)$ which satisfy the condition $P(|X|_k ≥ t) = exp(-N_k(t))$, where $N_k$ are concave functions. As a consequence we obtain precise information about the tail probabilities of linear combinations of independent random variables for which $N(t) = |t|^r$ for some fixed 0 r ≤ 1. This complements work of Gluskin and Kwapień who have done the same for convex functions N.
DOI : 10.4064/sm-123-1-15-42

P. Hitczenko 1 ;  1 ;  1

1
@article{10_4064_sm_123_1_15_42,
     author = {P. Hitczenko and   and  },
     title = {Moment inequalities for sums of certain independent symmetric random variables},
     journal = {Studia Mathematica},
     pages = {15--42},
     publisher = {mathdoc},
     volume = {123},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-123-1-15-42},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-123-1-15-42/}
}
TY  - JOUR
AU  - P. Hitczenko
AU  -  
AU  -  
TI  - Moment inequalities for sums of certain independent symmetric random variables
JO  - Studia Mathematica
PY  - 1997
SP  - 15
EP  - 42
VL  - 123
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-123-1-15-42/
DO  - 10.4064/sm-123-1-15-42
LA  - en
ID  - 10_4064_sm_123_1_15_42
ER  - 
%0 Journal Article
%A P. Hitczenko
%A  
%A  
%T Moment inequalities for sums of certain independent symmetric random variables
%J Studia Mathematica
%D 1997
%P 15-42
%V 123
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-123-1-15-42/
%R 10.4064/sm-123-1-15-42
%G en
%F 10_4064_sm_123_1_15_42
P. Hitczenko;  ;  . Moment inequalities for sums of certain independent symmetric random variables. Studia Mathematica, Tome 123 (1997) no. 1, pp. 15-42. doi: 10.4064/sm-123-1-15-42

Cité par Sources :