$BMO_ψ$-spaces and applications to extrapolation theory
Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We investigate a scale of $BMO_ψ$-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with $BMO_ψ$-$L_∞$-estimates, and arrives at $L_p$-$L_p$-estimates, or more generally, at estimates between K-functionals from interpolation theory.
@article{10_4064_sm_122_3_235_274,
author = {Stefan Geiss},
title = {$BMO_\ensuremath{\psi}$-spaces and applications to extrapolation theory},
journal = {Studia Mathematica},
pages = {235--274},
year = {1997},
volume = {122},
number = {3},
doi = {10.4064/sm-122-3-235-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/}
}
Stefan Geiss. $BMO_ψ$-spaces and applications to extrapolation theory. Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274. doi: 10.4064/sm-122-3-235-274
Cité par Sources :