$BMO_ψ$-spaces and applications to extrapolation theory
Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate a scale of $BMO_ψ$-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with $BMO_ψ$-$L_∞$-estimates, and arrives at $L_p$-$L_p$-estimates, or more generally, at estimates between K-functionals from interpolation theory.
@article{10_4064_sm_122_3_235_274,
author = {Stefan Geiss},
title = {$BMO_\ensuremath{\psi}$-spaces and applications to extrapolation theory},
journal = {Studia Mathematica},
pages = {235--274},
publisher = {mathdoc},
volume = {122},
number = {3},
year = {1997},
doi = {10.4064/sm-122-3-235-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/}
}
TY - JOUR AU - Stefan Geiss TI - $BMO_ψ$-spaces and applications to extrapolation theory JO - Studia Mathematica PY - 1997 SP - 235 EP - 274 VL - 122 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/ DO - 10.4064/sm-122-3-235-274 LA - en ID - 10_4064_sm_122_3_235_274 ER -
Stefan Geiss. $BMO_ψ$-spaces and applications to extrapolation theory. Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274. doi: 10.4064/sm-122-3-235-274
Cité par Sources :