$BMO_ψ$-spaces and applications to extrapolation theory
Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate a scale of $BMO_ψ$-spaces defined with the help of certain Lorentz norms. The results are applied to extrapolation techniques concerning operators defined on adapted sequences. Our extrapolation works simultaneously with two operators, starts with $BMO_ψ$-$L_∞$-estimates, and arrives at $L_p$-$L_p$-estimates, or more generally, at estimates between K-functionals from interpolation theory.
DOI : 10.4064/sm-122-3-235-274

Stefan Geiss 1

1
@article{10_4064_sm_122_3_235_274,
     author = {Stefan Geiss},
     title = {$BMO_\ensuremath{\psi}$-spaces and applications to extrapolation theory},
     journal = {Studia Mathematica},
     pages = {235--274},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-122-3-235-274},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/}
}
TY  - JOUR
AU  - Stefan Geiss
TI  - $BMO_ψ$-spaces and applications to extrapolation theory
JO  - Studia Mathematica
PY  - 1997
SP  - 235
EP  - 274
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/
DO  - 10.4064/sm-122-3-235-274
LA  - en
ID  - 10_4064_sm_122_3_235_274
ER  - 
%0 Journal Article
%A Stefan Geiss
%T $BMO_ψ$-spaces and applications to extrapolation theory
%J Studia Mathematica
%D 1997
%P 235-274
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-235-274/
%R 10.4064/sm-122-3-235-274
%G en
%F 10_4064_sm_122_3_235_274
Stefan Geiss. $BMO_ψ$-spaces and applications to extrapolation theory. Studia Mathematica, Tome 122 (1997) no. 3, pp. 235-274. doi: 10.4064/sm-122-3-235-274

Cité par Sources :