On some vector balancing problems
Studia Mathematica, Tome 122 (1997) no. 3, pp. 225-234
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let V be an origin-symmetric convex body in $ℝ^n$, n≥ 2, of Gaussian measure $γ_n(V)≥ 1/2$. It is proved that for every choice $u_1,...,u_n$ of vectors in the Euclidean unit ball $B_n$, there exist signs $ε_j ∈ {-1,1}$ with $ε_{1}u_{1} + ... + ε_{n}u_{n} ∈ (clogn)V$. The method used can be modified to give simple proofs of several related results of J. Spencer and E. D. Gluskin.
@article{10_4064_sm_122_3_225_234,
author = {Apostolos A. Giannopoulos},
title = {On some vector balancing problems},
journal = {Studia Mathematica},
pages = {225--234},
publisher = {mathdoc},
volume = {122},
number = {3},
year = {1997},
doi = {10.4064/sm-122-3-225-234},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-225-234/}
}
TY - JOUR AU - Apostolos A. Giannopoulos TI - On some vector balancing problems JO - Studia Mathematica PY - 1997 SP - 225 EP - 234 VL - 122 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-225-234/ DO - 10.4064/sm-122-3-225-234 LA - en ID - 10_4064_sm_122_3_225_234 ER -
Apostolos A. Giannopoulos. On some vector balancing problems. Studia Mathematica, Tome 122 (1997) no. 3, pp. 225-234. doi: 10.4064/sm-122-3-225-234
Cité par Sources :