On some vector balancing problems
Studia Mathematica, Tome 122 (1997) no. 3, pp. 225-234

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let V be an origin-symmetric convex body in $ℝ^n$, n≥ 2, of Gaussian measure $γ_n(V)≥ 1/2$. It is proved that for every choice $u_1,...,u_n$ of vectors in the Euclidean unit ball $B_n$, there exist signs $ε_j ∈ {-1,1}$ with $ε_{1}u_{1} + ... + ε_{n}u_{n} ∈ (clogn)V$. The method used can be modified to give simple proofs of several related results of J. Spencer and E. D. Gluskin.
DOI : 10.4064/sm-122-3-225-234

Apostolos A. Giannopoulos 1

1
@article{10_4064_sm_122_3_225_234,
     author = {Apostolos A.  Giannopoulos},
     title = {On some vector balancing problems},
     journal = {Studia Mathematica},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-122-3-225-234},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-225-234/}
}
TY  - JOUR
AU  - Apostolos A.  Giannopoulos
TI  - On some vector balancing problems
JO  - Studia Mathematica
PY  - 1997
SP  - 225
EP  - 234
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-225-234/
DO  - 10.4064/sm-122-3-225-234
LA  - en
ID  - 10_4064_sm_122_3_225_234
ER  - 
%0 Journal Article
%A Apostolos A.  Giannopoulos
%T On some vector balancing problems
%J Studia Mathematica
%D 1997
%P 225-234
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-225-234/
%R 10.4064/sm-122-3-225-234
%G en
%F 10_4064_sm_122_3_225_234
Apostolos A.  Giannopoulos. On some vector balancing problems. Studia Mathematica, Tome 122 (1997) no. 3, pp. 225-234. doi: 10.4064/sm-122-3-225-234

Cité par Sources :