$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
Studia Mathematica, Tome 122 (1997) no. 3, pp. 201-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the $L^p$ boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function $|x|^{α}|y|^{β}$. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
Keywords:
$L^p$ boundedness, oscillatory integrals, extended domains, Calderón-Zygmund kernels
Affiliations des auteurs :
Yibiao Pan 1 ;  1 ;  1
@article{10_4064_sm_122_3_201_224,
author = {Yibiao Pan and and },
title = {$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains},
journal = {Studia Mathematica},
pages = {201--224},
publisher = {mathdoc},
volume = {122},
number = {3},
year = {1997},
doi = {10.4064/sm-122-3-201-224},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/}
}
TY - JOUR
AU - Yibiao Pan
AU -
AU -
TI - $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
JO - Studia Mathematica
PY - 1997
SP - 201
EP - 224
VL - 122
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/
DO - 10.4064/sm-122-3-201-224
LA - en
ID - 10_4064_sm_122_3_201_224
ER -
%0 Journal Article
%A Yibiao Pan
%A
%A
%T $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
%J Studia Mathematica
%D 1997
%P 201-224
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/
%R 10.4064/sm-122-3-201-224
%G en
%F 10_4064_sm_122_3_201_224
Yibiao Pan; ; . $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains. Studia Mathematica, Tome 122 (1997) no. 3, pp. 201-224. doi: 10.4064/sm-122-3-201-224
Cité par Sources :