$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
Studia Mathematica, Tome 122 (1997) no. 3, pp. 201-224

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the $L^p$ boundedness of certain nonconvolutional oscillatory integral operators and give explicit description of their extended domains. The class of phase functions considered here includes the function $|x|^{α}|y|^{β}$. Sharp boundedness results are obtained in terms of α, β, and rate of decay of the kernel at infinity.
DOI : 10.4064/sm-122-3-201-224
Keywords: $L^p$ boundedness, oscillatory integrals, extended domains, Calderón-Zygmund kernels

Yibiao Pan 1 ;  1 ;  1

1
@article{10_4064_sm_122_3_201_224,
     author = {Yibiao Pan and   and  },
     title = {$L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains},
     journal = {Studia Mathematica},
     pages = {201--224},
     publisher = {mathdoc},
     volume = {122},
     number = {3},
     year = {1997},
     doi = {10.4064/sm-122-3-201-224},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/}
}
TY  - JOUR
AU  - Yibiao Pan
AU  -  
AU  -  
TI  - $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
JO  - Studia Mathematica
PY  - 1997
SP  - 201
EP  - 224
VL  - 122
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/
DO  - 10.4064/sm-122-3-201-224
LA  - en
ID  - 10_4064_sm_122_3_201_224
ER  - 
%0 Journal Article
%A Yibiao Pan
%A  
%A  
%T $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains
%J Studia Mathematica
%D 1997
%P 201-224
%V 122
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-3-201-224/
%R 10.4064/sm-122-3-201-224
%G en
%F 10_4064_sm_122_3_201_224
Yibiao Pan;  ;  . $L^{2}$ and $L^{p}$ estimates for oscillatory integrals and their extended domains. Studia Mathematica, Tome 122 (1997) no. 3, pp. 201-224. doi: 10.4064/sm-122-3-201-224

Cité par Sources :