On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces
Studia Mathematica, Tome 122 (1997) no. 2, pp. 99-116

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that the main results of the theory of real interpolation, i.e. the equivalence and reiteration theorems, can be extended from couples to a class of (n+1)-tuples of Banach spaces, which includes (n+1)-tuples of Banach function lattices, Sobolev and Besov spaces. As an application of our results, it is shown that Lions' problem on interpolation of subspaces and Semenov's problem on interpolation of subcouples have positive solutions when all spaces are Banach function lattices or their retracts. In general, these problems have negative solutions.
DOI : 10.4064/sm-122-2-99-116

Irina Asekritova 1 ;  1

1
@article{10_4064_sm_122_2_99_116,
     author = {Irina Asekritova and  },
     title = {On equivalence of {K-} and {J-methods} for (n+1)-tuples of {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {99--116},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-99-116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-99-116/}
}
TY  - JOUR
AU  - Irina Asekritova
AU  -  
TI  - On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 99
EP  - 116
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-99-116/
DO  - 10.4064/sm-122-2-99-116
LA  - en
ID  - 10_4064_sm_122_2_99_116
ER  - 
%0 Journal Article
%A Irina Asekritova
%A  
%T On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces
%J Studia Mathematica
%D 1997
%P 99-116
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-99-116/
%R 10.4064/sm-122-2-99-116
%G en
%F 10_4064_sm_122_2_99_116
Irina Asekritova;  . On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces. Studia Mathematica, Tome 122 (1997) no. 2, pp. 99-116. doi: 10.4064/sm-122-2-99-116

Cité par Sources :