On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces
Studia Mathematica, Tome 122 (1997) no. 2, pp. 99-116
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is shown that the main results of the theory of real interpolation, i.e. the equivalence and reiteration theorems, can be extended from couples to a class of (n+1)-tuples of Banach spaces, which includes (n+1)-tuples of Banach function lattices, Sobolev and Besov spaces. As an application of our results, it is shown that Lions' problem on interpolation of subspaces and Semenov's problem on interpolation of subcouples have positive solutions when all spaces are Banach function lattices or their retracts. In general, these problems have negative solutions.
@article{10_4064_sm_122_2_99_116,
author = {Irina Asekritova and },
title = {On equivalence of {K-} and {J-methods} for (n+1)-tuples of {Banach} spaces},
journal = {Studia Mathematica},
pages = {99--116},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-99-116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-99-116/}
}
TY - JOUR AU - Irina Asekritova AU - TI - On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces JO - Studia Mathematica PY - 1997 SP - 99 EP - 116 VL - 122 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-99-116/ DO - 10.4064/sm-122-2-99-116 LA - en ID - 10_4064_sm_122_2_99_116 ER -
Irina Asekritova; . On equivalence of K- and J-methods for (n+1)-tuples of Banach spaces. Studia Mathematica, Tome 122 (1997) no. 2, pp. 99-116. doi: 10.4064/sm-122-2-99-116
Cité par Sources :