On log-subharmonicity of singular values of matrices
Studia Mathematica, Tome 122 (1997) no. 2, pp. 195-200
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let F be an analytic function from an open subset Ω of the complex plane into the algebra of n×n matrices. Denoting by $s_1,...,s_n$ the decreasing sequence of singular values of a matrix, we prove that the functions $log s_{1}(F(λ)) + ... + log s_{k}(F(λ))$ and $log^{+}s_{1}(F(λ)) + ... + log^{+}s_{k}(F(λ))$ are subharmonic on Ω for 1 ≤ k ≤ n.
@article{10_4064_sm_122_2_195_200,
author = {Bernard Aupetit},
title = {On log-subharmonicity of singular values of matrices},
journal = {Studia Mathematica},
pages = {195--200},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-195-200},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-195-200/}
}
Bernard Aupetit. On log-subharmonicity of singular values of matrices. Studia Mathematica, Tome 122 (1997) no. 2, pp. 195-200. doi: 10.4064/sm-122-2-195-200
Cité par Sources :