The set of automorphisms of B(H) is topologically reflexive in B(B(H))
Studia Mathematica, Tome 122 (1997) no. 2, pp. 183-193
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The aim of this paper is to prove the statement announced in the title which can be reformulated in the following way. Let H be a separable infinite-dimensional Hilbert space and let Φ: B(H) → B(H) be a continuous linear mapping with the property that for every A ∈ B(H) there exists a sequence $(Φ_n)$ of automorphisms of B(H) (depending on A) such that $Φ(A)= lim_n Φ_n(A)$. Then Φ is an automorphism. Moreover, a similar statement holds for the set of all surjective isometries of B(H).
Keywords:
reflexivity, automorphism, Jordan homomorphism, automatic surjectivity
Affiliations des auteurs :
Lajos Molnár 1
@article{10_4064_sm_122_2_183_193,
author = {Lajos Moln\'ar},
title = {The set of automorphisms of {B(H)} is topologically reflexive in {B(B(H))}},
journal = {Studia Mathematica},
pages = {183--193},
publisher = {mathdoc},
volume = {122},
number = {2},
year = {1997},
doi = {10.4064/sm-122-2-183-193},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-183-193/}
}
TY - JOUR AU - Lajos Molnár TI - The set of automorphisms of B(H) is topologically reflexive in B(B(H)) JO - Studia Mathematica PY - 1997 SP - 183 EP - 193 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-183-193/ DO - 10.4064/sm-122-2-183-193 LA - en ID - 10_4064_sm_122_2_183_193 ER -
Lajos Molnár. The set of automorphisms of B(H) is topologically reflexive in B(B(H)). Studia Mathematica, Tome 122 (1997) no. 2, pp. 183-193. doi: 10.4064/sm-122-2-183-193
Cité par Sources :