The set of automorphisms of B(H) is topologically reflexive in B(B(H))
Studia Mathematica, Tome 122 (1997) no. 2, pp. 183-193
The aim of this paper is to prove the statement announced in the title which can be reformulated in the following way. Let H be a separable infinite-dimensional Hilbert space and let Φ: B(H) → B(H) be a continuous linear mapping with the property that for every A ∈ B(H) there exists a sequence $(Φ_n)$ of automorphisms of B(H) (depending on A) such that $Φ(A)= lim_n Φ_n(A)$. Then Φ is an automorphism. Moreover, a similar statement holds for the set of all surjective isometries of B(H).
Keywords:
reflexivity, automorphism, Jordan homomorphism, automatic surjectivity
@article{10_4064_sm_122_2_183_193,
author = {Lajos Moln\'ar},
title = {The set of automorphisms of {B(H)} is topologically reflexive in {B(B(H))}},
journal = {Studia Mathematica},
pages = {183--193},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-183-193},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-183-193/}
}
TY - JOUR AU - Lajos Molnár TI - The set of automorphisms of B(H) is topologically reflexive in B(B(H)) JO - Studia Mathematica PY - 1997 SP - 183 EP - 193 VL - 122 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-183-193/ DO - 10.4064/sm-122-2-183-193 LA - en ID - 10_4064_sm_122_2_183_193 ER -
Lajos Molnár. The set of automorphisms of B(H) is topologically reflexive in B(B(H)). Studia Mathematica, Tome 122 (1997) no. 2, pp. 183-193. doi: 10.4064/sm-122-2-183-193
Cité par Sources :