Hardy spaces of conjugate temperatures
Studia Mathematica, Tome 122 (1997) no. 2, pp. 153-165
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We define Hardy spaces of pairs of conjugate temperatures on $ℝ_{+}^{2}$ using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.
@article{10_4064_sm_122_2_153_165,
author = {Martha Guzm\'an-Partida},
title = {Hardy spaces of conjugate temperatures},
journal = {Studia Mathematica},
pages = {153--165},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-153-165},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-153-165/}
}
Martha Guzmán-Partida. Hardy spaces of conjugate temperatures. Studia Mathematica, Tome 122 (1997) no. 2, pp. 153-165. doi: 10.4064/sm-122-2-153-165
Cité par Sources :