Hardy spaces of conjugate temperatures
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 122 (1997) no. 2, pp. 153-165
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We define Hardy spaces of pairs of conjugate temperatures on $ℝ_{+}^{2}$ using the equations introduced by Kochneff and Sagher. As in the holomorphic case, the Hilbert transform relates both components. We demonstrate that the boundary distributions of our Hardy spaces of conjugate temperatures coincide with the boundary distributions of Hardy spaces of holomorphic functions.
            
            
            
          
        
      @article{10_4064_sm_122_2_153_165,
     author = {Martha Guzm\'an-Partida},
     title = {Hardy spaces of conjugate temperatures},
     journal = {Studia Mathematica},
     pages = {153--165},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-153-165},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-153-165/}
}
                      
                      
                    TY - JOUR AU - Martha Guzmán-Partida TI - Hardy spaces of conjugate temperatures JO - Studia Mathematica PY - 1997 SP - 153 EP - 165 VL - 122 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-153-165/ DO - 10.4064/sm-122-2-153-165 LA - en ID - 10_4064_sm_122_2_153_165 ER -
Martha Guzmán-Partida. Hardy spaces of conjugate temperatures. Studia Mathematica, Tome 122 (1997) no. 2, pp. 153-165. doi: 10.4064/sm-122-2-153-165
Cité par Sources :
