Semi-Browder operators and perturbations
Studia Mathematica, Tome 122 (1997) no. 2, pp. 131-137

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].
DOI : 10.4064/sm-122-2-131-137
Keywords: ascent, descent, semi-Fredholm

Vladimir Rakočević 1

1
@article{10_4064_sm_122_2_131_137,
     author = {Vladimir Rako\v{c}evi\'c},
     title = {Semi-Browder operators and perturbations},
     journal = {Studia Mathematica},
     pages = {131--137},
     publisher = {mathdoc},
     volume = {122},
     number = {2},
     year = {1997},
     doi = {10.4064/sm-122-2-131-137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-131-137/}
}
TY  - JOUR
AU  - Vladimir Rakočević
TI  - Semi-Browder operators and perturbations
JO  - Studia Mathematica
PY  - 1997
SP  - 131
EP  - 137
VL  - 122
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-131-137/
DO  - 10.4064/sm-122-2-131-137
LA  - en
ID  - 10_4064_sm_122_2_131_137
ER  - 
%0 Journal Article
%A Vladimir Rakočević
%T Semi-Browder operators and perturbations
%J Studia Mathematica
%D 1997
%P 131-137
%V 122
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-131-137/
%R 10.4064/sm-122-2-131-137
%G en
%F 10_4064_sm_122_2_131_137
Vladimir Rakočević. Semi-Browder operators and perturbations. Studia Mathematica, Tome 122 (1997) no. 2, pp. 131-137. doi: 10.4064/sm-122-2-131-137

Cité par Sources :