Semi-Browder operators and perturbations
Studia Mathematica, Tome 122 (1997) no. 2, pp. 131-137
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
An operator in a Banach space is called upper (resp. lower) semi-Browder if it is upper (lower) semi-Fredholm and has a finite ascent (resp. descent). An operator in a Banach space is called semi-Browder if it is upper semi-Browder or lower semi-Browder. We prove the stability of the semi-Browder operators under commuting Riesz operator perturbations. As a corollary we get some results of Grabiner [6], Kaashoek and Lay [8], Lay [11], Rakočević [15] and Schechter [16].
@article{10_4064_sm_122_2_131_137,
author = {Vladimir Rako\v{c}evi\'c},
title = {Semi-Browder operators and perturbations},
journal = {Studia Mathematica},
pages = {131--137},
year = {1997},
volume = {122},
number = {2},
doi = {10.4064/sm-122-2-131-137},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-2-131-137/}
}
Vladimir Rakočević. Semi-Browder operators and perturbations. Studia Mathematica, Tome 122 (1997) no. 2, pp. 131-137. doi: 10.4064/sm-122-2-131-137
Cité par Sources :