Purely non-atomic weak $L^p$ spaces
Studia Mathematica, Tome 122 (1997) no. 1, pp. 55-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (Ω,∑,μ) be a purely non-atomic measure space, and let 1 p ∞. If $L^{p,∞}(Ω,∑,μ)$ is isomorphic, as a Banach space, to $L^{p,∞}(Ω',∑',μ')$ for some purely atomic measure space (Ω',∑',μ'), then there is a measurable partition $Ω = Ω_{1} ∪ Ω_{2}$ such that $(Ω_{1}, Σ ∩ Ω_{1},μ|_{Σ ∩ Ω_{1}})$ is countably generated and σ-finite, and that μ(σ) = 0 or ∞ for every measurable $σ ⊆ Ω_{2}$. In particular, $L^{p,∞}(Ω,∑,μ)$ is isomorphic to $ℓ^{p,∞}$.
@article{10_4064_sm_122_1_55_66,
author = {Denny H. Leung},
title = {Purely non-atomic weak $L^p$ spaces},
journal = {Studia Mathematica},
pages = {55--66},
publisher = {mathdoc},
volume = {122},
number = {1},
year = {1997},
doi = {10.4064/sm-122-1-55-66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-55-66/}
}
Denny H. Leung. Purely non-atomic weak $L^p$ spaces. Studia Mathematica, Tome 122 (1997) no. 1, pp. 55-66. doi: 10.4064/sm-122-1-55-66
Cité par Sources :