Purely non-atomic weak $L^p$ spaces
Studia Mathematica, Tome 122 (1997) no. 1, pp. 55-66

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (Ω,∑,μ) be a purely non-atomic measure space, and let 1 p ∞. If $L^{p,∞}(Ω,∑,μ)$ is isomorphic, as a Banach space, to $L^{p,∞}(Ω',∑',μ')$ for some purely atomic measure space (Ω',∑',μ'), then there is a measurable partition $Ω = Ω_{1} ∪ Ω_{2}$ such that $(Ω_{1}, Σ ∩ Ω_{1},μ|_{Σ ∩ Ω_{1}})$ is countably generated and σ-finite, and that μ(σ) = 0 or ∞ for every measurable $σ ⊆ Ω_{2}$. In particular, $L^{p,∞}(Ω,∑,μ)$ is isomorphic to $ℓ^{p,∞}$.
DOI : 10.4064/sm-122-1-55-66

Denny H. Leung 1

1
@article{10_4064_sm_122_1_55_66,
     author = {Denny H.  Leung},
     title = {Purely non-atomic weak $L^p$ spaces},
     journal = {Studia Mathematica},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {122},
     number = {1},
     year = {1997},
     doi = {10.4064/sm-122-1-55-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-55-66/}
}
TY  - JOUR
AU  - Denny H.  Leung
TI  - Purely non-atomic weak $L^p$ spaces
JO  - Studia Mathematica
PY  - 1997
SP  - 55
EP  - 66
VL  - 122
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-55-66/
DO  - 10.4064/sm-122-1-55-66
LA  - en
ID  - 10_4064_sm_122_1_55_66
ER  - 
%0 Journal Article
%A Denny H.  Leung
%T Purely non-atomic weak $L^p$ spaces
%J Studia Mathematica
%D 1997
%P 55-66
%V 122
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-55-66/
%R 10.4064/sm-122-1-55-66
%G en
%F 10_4064_sm_122_1_55_66
Denny H.  Leung. Purely non-atomic weak $L^p$ spaces. Studia Mathematica, Tome 122 (1997) no. 1, pp. 55-66. doi: 10.4064/sm-122-1-55-66

Cité par Sources :