Some weighted inequalities for general one-sided maximal operators
Studia Mathematica, Tome 122 (1997) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We characterize the pairs of weights on ℝ for which the operators $M^{+}_{h,k}f(x) = sup_{c>x}h(x,c) ʃ_{x}^{c} f(s)k(x,s,c)ds$ are of weak type (p,q), or of restricted weak type (p,q), 1 ≤ p q ∞, between the Lebesgue spaces with the coresponding weights. The functions h and k are positive, h is defined on ${(x,c): x c}$, while k is defined on ${(x,s,c): x s c}$. If $h(x,c) = (c-x)^{-β}$, $k(x,s,c) = (c-s)^{α-1}$, 0 ≤ β ≤ α ≤ 1, we obtain the operator $M^{+}_{α,β}f = sup_{c>x} 1/(c-x)^{β} ʃ_{x}^{c} f(s)/(c-s)^{1-α} ds$. For this operator, under the assumption 1/p - 1/q = α - β, we extend the weak type characterization to the case p = q and prove that in the case of equal weights and 1 p ∞, weak and strong type are equivalent. If we take α = β we characterize the strong type weights for the operator $M^{+}_{α,α}$ introduced by W. Jurkat and J. Troutman in the study of $C_α$ differentiation of the integral.
Keywords:
one-sided maximal operators, Cesàro averages, weights
Affiliations des auteurs :
F. J. Martín-Reyes 1 ;  1
@article{10_4064_sm_122_1_1_14, author = {F. J. Mart{\'\i}n-Reyes and }, title = {Some weighted inequalities for general one-sided maximal operators}, journal = {Studia Mathematica}, pages = {1--14}, publisher = {mathdoc}, volume = {122}, number = {1}, year = {1997}, doi = {10.4064/sm-122-1-1-14}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-1-14/} }
TY - JOUR AU - F. J. Martín-Reyes AU - TI - Some weighted inequalities for general one-sided maximal operators JO - Studia Mathematica PY - 1997 SP - 1 EP - 14 VL - 122 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-122-1-1-14/ DO - 10.4064/sm-122-1-1-14 LA - en ID - 10_4064_sm_122_1_1_14 ER -
F. J. Martín-Reyes; . Some weighted inequalities for general one-sided maximal operators. Studia Mathematica, Tome 122 (1997) no. 1, pp. 1-14. doi: 10.4064/sm-122-1-1-14
Cité par Sources :