Singular values, Ramanujan modular equations, and Landen transformations
Studia Mathematica, Tome 121 (1996) no. 3, pp. 221-230

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A new connection between geometric function theory and number theory is derived from Ramanujan's work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan's modular identities yield numerous new functional identities for $φ_{1/p}(r)$ for various primes p.
DOI : 10.4064/sm-121-3-221-230

M. Vuorinen 1

1
@article{10_4064_sm_121_3_221_230,
     author = {M. Vuorinen},
     title = {Singular values, {Ramanujan} modular equations, and {Landen} transformations},
     journal = {Studia Mathematica},
     pages = {221--230},
     publisher = {mathdoc},
     volume = {121},
     number = {3},
     year = {1996},
     doi = {10.4064/sm-121-3-221-230},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-3-221-230/}
}
TY  - JOUR
AU  - M. Vuorinen
TI  - Singular values, Ramanujan modular equations, and Landen transformations
JO  - Studia Mathematica
PY  - 1996
SP  - 221
EP  - 230
VL  - 121
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-3-221-230/
DO  - 10.4064/sm-121-3-221-230
LA  - en
ID  - 10_4064_sm_121_3_221_230
ER  - 
%0 Journal Article
%A M. Vuorinen
%T Singular values, Ramanujan modular equations, and Landen transformations
%J Studia Mathematica
%D 1996
%P 221-230
%V 121
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-121-3-221-230/
%R 10.4064/sm-121-3-221-230
%G en
%F 10_4064_sm_121_3_221_230
M. Vuorinen. Singular values, Ramanujan modular equations, and Landen transformations. Studia Mathematica, Tome 121 (1996) no. 3, pp. 221-230. doi: 10.4064/sm-121-3-221-230

Cité par Sources :