Singular values, Ramanujan modular equations, and Landen transformations
Studia Mathematica, Tome 121 (1996) no. 3, pp. 221-230
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A new connection between geometric function theory and number theory is derived from Ramanujan's work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan's modular identities yield numerous new functional identities for $φ_{1/p}(r)$ for various primes p.
@article{10_4064_sm_121_3_221_230,
author = {M. Vuorinen},
title = {Singular values, {Ramanujan} modular equations, and {Landen} transformations},
journal = {Studia Mathematica},
pages = {221--230},
year = {1996},
volume = {121},
number = {3},
doi = {10.4064/sm-121-3-221-230},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-121-3-221-230/}
}
TY - JOUR AU - M. Vuorinen TI - Singular values, Ramanujan modular equations, and Landen transformations JO - Studia Mathematica PY - 1996 SP - 221 EP - 230 VL - 121 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-121-3-221-230/ DO - 10.4064/sm-121-3-221-230 LA - en ID - 10_4064_sm_121_3_221_230 ER -
M. Vuorinen. Singular values, Ramanujan modular equations, and Landen transformations. Studia Mathematica, Tome 121 (1996) no. 3, pp. 221-230. doi: 10.4064/sm-121-3-221-230
Cité par Sources :